Search results
Results from the WOW.Com Content Network
Example of a genetic regulatory circuit for Drosophila melanogaster's huckebein (hkb) gene's effects on gap gene expression. Genetic regulatory circuits (also referred to as transcriptional regulatory circuits) is a concept that evolved from the Operon Model discovered by François Jacob and Jacques Monod.
However, methods involving direct genetic introduction are not inherently effective without invoking the basic principles of synthetic cellular circuits. For example, each of these successful systems employs a method to introduce all-or-none induction or expression.
The following example illustrates how a Boolean network can model a GRN together with its gene products (the outputs) and the substances from the environment that affect it (the inputs). Stuart Kauffman was amongst the first biologists to use the metaphor of Boolean networks to model genetic regulatory networks. [31] [32]
Although as early as 1951, Barbara McClintock showed interaction between two genetic loci, Activator (Ac) and Dissociator (Ds), in the color formation of maize seeds, the first discovery of a gene regulation system is widely considered to be the identification in 1961 of the lac operon, discovered by François Jacob and Jacques Monod, in which ...
Gene regulatory pathway. In genetics, a regulator gene, regulator, or regulatory gene is a gene involved in controlling the expression of one or more other genes. Regulatory sequences, which encode regulatory genes, are often at the five prime end (5') to the start site of transcription of the gene they regulate. In addition, these sequences ...
A major function of the top level control is to ensure that the operations involved in the cell cycle occur in the proper temporal order. In Caulobacter, this is accomplished by the genetic regulatory circuit composed of five master regulators and an associated phospho-signaling network. The phosphosignaling network monitors the state of ...
The artificial repressilator is a milestone of synthetic biology which shows that genetic regulatory networks can be designed and implemented to perform novel functions. However, it was found that the cells' oscillations drifted out of phase after a period of time and the artificial repressilator's activity was influenced by cell growth.
Trans-acting factors in alternative splicing in mRNA. Alternative splicing is a key mechanism that is involved in gene expression regulation. In the alternative splicing, trans-acting factors such as SR protein, hnRNP and snRNP control this mechanism by acting in trans. SR protein promotes the spliceosome assembly by interacting with snRNP(e.g. U1, U2) and splicing factors(e.g. U2AF65), and it ...