enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kolmogorov–Smirnov test - Wikipedia

    en.wikipedia.org/wiki/KolmogorovSmirnov_test

    Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. In statistics, the Kolmogorov–Smirnov test (also K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions.

  3. Normality test - Wikipedia

    en.wikipedia.org/wiki/Normality_test

    Kolmogorov–Smirnov test: this test only works if the mean and the variance of the normal distribution are assumed known under the null hypothesis, Lilliefors test: based on the Kolmogorov–Smirnov test, adjusted for when also estimating the mean and variance from the data, Shapiro–Wilk test, and; Pearson's chi-squared test.

  4. List of statistical tests - Wikipedia

    en.wikipedia.org/wiki/List_of_statistical_tests

    Statistical tests are used to test the fit between a hypothesis and the data. [1] [2] ... Kolmogorov–Smirnov test: interval: 1: Normality test: distribution ...

  5. Lilliefors test - Wikipedia

    en.wikipedia.org/wiki/Lilliefors_test

    Lilliefors test is a normality test based on the Kolmogorov–Smirnov test.It is used to test the null hypothesis that data come from a normally distributed population, when the null hypothesis does not specify which normal distribution; i.e., it does not specify the expected value and variance of the distribution. [1]

  6. Nonparametric statistics - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_statistics

    Kolmogorov–Smirnov test: tests whether a sample is drawn from a given distribution, or whether two samples are drawn from the same distribution. Kruskal–Wallis one-way analysis of variance by ranks: tests whether > 2 independent samples are drawn from the same distribution.

  7. Empirical distribution function - Wikipedia

    en.wikipedia.org/wiki/Empirical_distribution...

    The sup-norm in this expression is called the Kolmogorov–Smirnov statistic for testing the goodness-of-fit between the empirical distribution ^ and the assumed true cumulative distribution function F. Other norm functions may be reasonably used here instead of the sup-norm.

  8. Goodness of fit - Wikipedia

    en.wikipedia.org/wiki/Goodness_of_fit

    Such measures can be used in statistical hypothesis testing, e.g. to test for normality of residuals, to test whether two samples are drawn from identical distributions (see Kolmogorov–Smirnov test), or whether outcome frequencies follow a specified distribution (see Pearson's chi-square test).

  9. Kolmogorov's theorem - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov's_theorem

    Kolmogorov's theorem is any of several different results by Andrey Kolmogorov: In statistics. Kolmogorov–Smirnov test; In probability theory. Hahn–Kolmogorov theorem;