Search results
Results from the WOW.Com Content Network
In microbial nitrogen metabolism, the occurrence of hydrazine as an intermediate is rare. [36] Hydrazine has been proposed as an enzyme-bound intermediate in the nitrogenase reaction. [37] Recently, using detailed molecular analyses and combining complementary methods, Kartal and coworkers published strong evidence supporting the latter mechanism.
Dissimilatory nitrate reduction to ammonium is a two step process, reducing NO 3 − to NO 2 − then NO 2 − to NH 4 +, though the reaction may begin with NO 2 − directly. [1] Each step is mediated by a different enzyme, the first step of dissimilatory nitrate reduction to ammonium is usually mediated by a periplasmic nitrate reductase.
The conversion of glutamate to glutamine is regulated by glutamine synthetase (GS) and is a key step in nitrogen metabolism. [2] This enzyme is regulated by at least four different mechanisms: 1. Repression and depression due to nitrogen levels; 2. Activation and inactivation due to enzymatic forms (taut and relaxed); 3.
Nitrogen fixation is a chemical process by which molecular dinitrogen (N 2) is converted into ammonia (NH 3). [1] It occurs both biologically and abiologically in chemical industries. Biological nitrogen fixation or diazotrophy is catalyzed by enzymes called nitrogenases. [2]
Glutamine synthetase (GS) (EC 6.3.1.2) [3] is an enzyme that plays an essential role in the metabolism of nitrogen by catalyzing the condensation of glutamate and ammonia to form glutamine: Glutamate + ATP + NH 3 → Glutamine + ADP + phosphate Glutamine synthetase catalyzed reaction
Nitrogen assimilation is the formation of organic nitrogen compounds like amino acids from inorganic nitrogen compounds present in the environment. Organisms like plants, fungi and certain bacteria that can fix nitrogen gas (N 2) depend on the ability to assimilate nitrate or ammonia for their needs. Other organisms, like animals, depend ...
The lighter isotope of nitrogen, 14 N, is preferred during denitrification, leaving the heavier nitrogen isotope, 15 N, in the residual matter. This selectivity leads to the enrichment of 14 N in the biomass compared to 15 N. [ 27 ] Moreover, the relative abundance of 14 N can be analyzed to distinguish denitrification apart from other ...
Molybdenum concentration also affects protein synthesis, metabolism, and growth. [10] Mo is a component in most nitrogenases. Among molybdoenzymes, nitrogenases are unique in lacking the molybdopterin. [11] [12] Nitrogenases catalyze the production of ammonia from atmospheric nitrogen: