enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Open mapping theorem (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Open_mapping_theorem...

    In functional analysis, the open mapping theorem, also known as the Banach–Schauder theorem or the Banach theorem [1] (named after Stefan Banach and Juliusz Schauder), is a fundamental result that states that if a bounded or continuous linear operator between Banach spaces is surjective then it is an open map.

  3. Type and cotype of a Banach space - Wikipedia

    en.wikipedia.org/wiki/Type_and_cotype_of_a...

    In functional analysis, the type and cotype of a Banach space are a classification of Banach spaces through probability theory and a measure, how far a Banach space from a Hilbert space is. The starting point is the Pythagorean identity for orthogonal vectors ( e k ) k = 1 n {\displaystyle (e_{k})_{k=1}^{n}} in Hilbert spaces

  4. Banach space - Wikipedia

    en.wikipedia.org/wiki/Banach_space

    In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space.Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

  5. ba space - Wikipedia

    en.wikipedia.org/wiki/Ba_space

    There is an obvious algebraic duality between the vector space of all finitely additive measures σ on Σ and the vector space of simple functions (() = ()). It is easy to check that the linear form induced by σ is continuous in the sup-norm if σ is bounded, and the result follows since a linear form on the dense subspace of simple functions ...

  6. Banach–Mazur theorem - Wikipedia

    en.wikipedia.org/wiki/Banach–Mazur_theorem

    On the other hand, the theorem tells us that C 0 ([0, 1], R) is a "really big" space, big enough to contain every possible separable Banach space. Non-separable Banach spaces cannot embed isometrically in the separable space C 0 ([0, 1], R), but for every Banach space X, one can find a compact Hausdorff space K and an isometric linear embedding ...

  7. Uniform boundedness principle - Wikipedia

    en.wikipedia.org/wiki/Uniform_boundedness_principle

    In mathematics, the uniform boundedness principle or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators (and ...

  8. List of Banach spaces - Wikipedia

    en.wikipedia.org/wiki/List_of_Banach_spaces

    Tsirelson space, a reflexive Banach space in which neither nor can be embedded. W.T. Gowers construction of a space X {\displaystyle X} that is isomorphic to X ⊕ X ⊕ X {\displaystyle X\oplus X\oplus X} but not X ⊕ X {\displaystyle X\oplus X} serves as a counterexample for weakening the premises of the Schroeder–Bernstein theorem [ 1 ]

  9. James's theorem - Wikipedia

    en.wikipedia.org/wiki/James's_theorem

    The topological dual of -Banach space deduced from by any restriction scalar will be denoted ′. (It is of interest only if is a complex space because if is a -space then ′ = ′. James compactness criterion — Let X {\displaystyle X} be a Banach space and A {\displaystyle A} a weakly closed nonempty subset of X . {\displaystyle X.}