enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bochner measurable function - Wikipedia

    en.wikipedia.org/wiki/Bochner_measurable_function

    In mathematics – specifically, in functional analysis – a Bochner-measurable function taking values in a Banach space is a function that equals almost everywhere the limit of a sequence of measurable countably-valued functions, i.e.,

  3. Approximation property - Wikipedia

    en.wikipedia.org/wiki/Approximation_property

    The construction of a Banach space without the approximation property earned Per Enflo a live goose in 1972, which had been promised by Stanisław Mazur (left) in 1936. [1] In mathematics, specifically functional analysis, a Banach space is said to have the approximation property (AP), if every compact operator is a limit of finite-rank ...

  4. List of Banach spaces - Wikipedia

    en.wikipedia.org/wiki/List_of_Banach_spaces

    Tsirelson space, a reflexive Banach space in which neither nor can be embedded. W.T. Gowers construction of a space X {\displaystyle X} that is isomorphic to X ⊕ X ⊕ X {\displaystyle X\oplus X\oplus X} but not X ⊕ X {\displaystyle X\oplus X} serves as a counterexample for weakening the premises of the Schroeder–Bernstein theorem [ 1 ]

  5. Banach space - Wikipedia

    en.wikipedia.org/wiki/Banach_space

    In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space.Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

  6. Type and cotype of a Banach space - Wikipedia

    en.wikipedia.org/wiki/Type_and_cotype_of_a...

    In functional analysis, the type and cotype of a Banach space are a classification of Banach spaces through probability theory and a measure, how far a Banach space from a Hilbert space is. The starting point is the Pythagorean identity for orthogonal vectors ( e k ) k = 1 n {\displaystyle (e_{k})_{k=1}^{n}} in Hilbert spaces

  7. Open mapping theorem (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Open_mapping_theorem...

    In functional analysis, the open mapping theorem, also known as the Banach–Schauder theorem or the Banach theorem [1] (named after Stefan Banach and Juliusz Schauder), is a fundamental result that states that if a bounded or continuous linear operator between Banach spaces is surjective then it is an open map.

  8. Eberlein–Šmulian theorem - Wikipedia

    en.wikipedia.org/wiki/Eberlein–Šmulian_theorem

    The Eberlein–Šmulian theorem is important in the theory of PDEs, and particularly in Sobolev spaces. Many Sobolev spaces are reflexive Banach spaces and therefore bounded subsets are weakly precompact by Alaoglu's theorem. Thus the theorem implies that bounded subsets are weakly sequentially precompact, and therefore from every bounded ...

  9. Bochner integral - Wikipedia

    en.wikipedia.org/wiki/Bochner_integral

    Let (,,) be a measure space, and be a Banach space.The Bochner integral of a function : is defined in much the same way as the Lebesgue integral. First, define a simple function to be any finite sum of the form = = (), where the are disjoint members of the -algebra , the are distinct elements of , and χ E is the characteristic function of .