enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adjugate matrix - Wikipedia

    en.wikipedia.org/wiki/Adjugate_matrix

    In linear algebra, the adjugate or classical adjoint of a square matrix A, adj(A), is the transpose of its cofactor matrix. [ 1 ] [ 2 ] It is occasionally known as adjunct matrix , [ 3 ] [ 4 ] or "adjoint", [ 5 ] though that normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose .

  3. Self-adjoint operator - Wikipedia

    en.wikipedia.org/wiki/Self-adjoint_operator

    In practical terms, having an essentially self-adjoint operator is almost as good as having a self-adjoint operator, since we merely need to take the closure to obtain a self-adjoint operator. In physics, the term Hermitian refers to symmetric as well as self-adjoint operators alike. The subtle difference between the two is generally overlooked.

  4. Coercive function - Wikipedia

    en.wikipedia.org/wiki/Coercive_function

    Also, given a coercive self-adjoint operator , the bilinear form defined as above is coercive. If A : H → H {\displaystyle A:H\to H} is a coercive operator then it is a coercive mapping (in the sense of coercivity of a vector field, where one has to replace the dot product with the more general inner product).

  5. Extensions of symmetric operators - Wikipedia

    en.wikipedia.org/wiki/Extensions_of_symmetric...

    An operator that has a unique self-adjoint extension is said to be essentially self-adjoint; equivalently, an operator is essentially self-adjoint if its closure (the operator whose graph is the closure of the graph of ) is self-adjoint. In general, a symmetric operator could have many self-adjoint extensions or none at all.

  6. Operator norm - Wikipedia

    en.wikipedia.org/wiki/Operator_norm

    The operator norm is also compatible with the composition, or multiplication, of operators: if , and are three normed spaces over the same base field, and : and : are two bounded operators, then it is a sub-multiplicative norm, that is: ‖ ‖ ‖ ‖ ‖ ‖.

  7. Stone's theorem on one-parameter unitary groups - Wikipedia

    en.wikipedia.org/wiki/Stone's_theorem_on_one...

    The Stone–von Neumann theorem generalizes Stone's theorem to a pair of self-adjoint operators, (,), satisfying the canonical commutation relation, and shows that these are all unitarily equivalent to the position operator and momentum operator on ().

  8. Laplace–Beltrami operator - Wikipedia

    en.wikipedia.org/wiki/Laplace–Beltrami_operator

    Conversely, characterizes the Laplace–Beltrami operator completely, in the sense that it is the only operator with this property. As a consequence, the Laplace–Beltrami operator is negative and formally self-adjoint, meaning that for compactly supported functions f {\displaystyle f} and h {\displaystyle h} ,

  9. Polar decomposition - Wikipedia

    en.wikipedia.org/wiki/Polar_decomposition

    The polar decomposition for matrices generalizes as follows: if A is a bounded linear operator then there is a unique factorization of A as a product A = UP where U is a partial isometry, P is a non-negative self-adjoint operator and the initial space of U is the closure of the range of P.