enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Digamma function - Wikipedia

    en.wikipedia.org/wiki/Digamma_function

    The exponential exp ψ(x) is approximately x − ⁠ 1 / 2 ⁠ for large x, but gets closer to x at small x, approaching 0 at x = 0. For x < 1, we can calculate limits based on the fact that between 1 and 2, ψ(x) ∈ [−γ, 1 − γ], so

  3. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    Here we employ a method called "indirect expansion" to expand the given function. This method uses the known Taylor expansion of the exponential function. In order to expand (1 + x)e x as a Taylor series in x, we use the known Taylor series of function e x:

  4. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    Because log(x) is the sum of the terms of the form log(1 + 2 −k) corresponding to those k for which the factor 1 + 2 −k was included in the product P, log(x) may be computed by simple addition, using a table of log(1 + 2 −k) for all k. Any base may be used for the logarithm table. [53]

  5. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of e itself, ln e, is 1, because e 1 = e, while the natural logarithm of 1 is 0, since e 0 = 1. The natural logarithm can be defined for any positive real number a as the area under the curve y = 1/x from 1 to a [4] (with the area being negative when 0 < a < 1). The simplicity of this definition, which is matched in many ...

  6. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...

  7. Gamma function - Wikipedia

    en.wikipedia.org/wiki/Gamma_function

    The coefficients of the terms with k > 1 of z 1−k in the last expansion are simply where the B k are the Bernoulli numbers. The gamma function also has Stirling Series (derived by Charles Hermite in 1900) equal to [ 43 ] l o g Γ ⁡ ( 1 + x ) = x ( x − 1 ) 2 ! log ⁡ ( 2 ) + x ( x − 1 ) ( x − 2 ) 3 !

  8. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.

  9. Lambert W function - Wikipedia

    en.wikipedia.org/wiki/Lambert_W_function

    The product logarithm Lambert W function plotted in the complex plane from −2 − 2i to 2 + 2i The graph of y = W(x) for real x < 6 and y > −4. The upper branch (blue) with y ≥ −1 is the graph of the function W 0 (principal branch), the lower branch (magenta) with y ≤ −1 is the graph of the function W −1. The minimum value of x is ...