enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proportional–integral–derivative controller - Wikipedia

    en.wikipedia.org/wiki/Proportional–integral...

    A block diagram of a PID controller in a feedback loop. r(t) is the desired process variable (PV) or setpoint (SP), and y(t) is the measured PV. The distinguishing feature of the PID controller is the ability to use the three control terms of proportional, integral and derivative influence on the controller output to apply accurate and optimal ...

  3. Servo control - Wikipedia

    en.wikipedia.org/wiki/Servo_control

    Servo and receiver connections A diagram showing typical PWM timing for a servomotor. Servo control is a method of controlling many types of RC/hobbyist servos by sending the servo a PWM (pulse-width modulation) signal, a series of repeating pulses of variable width where either the width of the pulse (most common modern hobby servos) or the duty cycle of a pulse train (less common today ...

  4. Servomotor - Wikipedia

    en.wikipedia.org/wiki/Servomotor

    A servomotor (or servo motor or simply servo) [1] is a rotary or linear actuator that allows for precise control of angular or linear position, velocity, and acceleration in a mechanical system. [ 1 ] [ 2 ] It constitutes part of a servomechanism , and consists of a suitable motor coupled to a sensor for position feedback and a controller ...

  5. Closed-loop controller - Wikipedia

    en.wikipedia.org/wiki/Closed-loop_controller

    The PID controller is probably the most-used feedback control design. If u(t) is the control signal sent to the system, y(t) is the measured output and r(t) is the desired output, and e(t) = r(t) − y(t) is the tracking error, a PID controller has the general form

  6. Servo (radio control) - Wikipedia

    en.wikipedia.org/wiki/Servo_(radio_control)

    The servo is controlled by three wires: ground, power, and control. The servo will move based on the pulses sent over the control wire, which set the angle of the actuator arm. The servo expects a pulse every 20 ms in order to gain correct information about the angle. The width of the servo pulse dictates the range of the servo's angular motion.

  7. List of Arduino boards and compatible systems - Wikipedia

    en.wikipedia.org/wiki/List_of_Arduino_boards_and...

    An all-in-one Arduino with motor controller. Compatible with the Arduino Uno. Roboduino [110] Designed for robotics. All connections have neighboring power buses (not pictured) for servos and sensors. Additional headers for power and serial communication are provided. It was developed by Curious Inventor, LLC. SunDuino [111]

  8. Integral windup - Wikipedia

    en.wikipedia.org/wiki/Integral_windup

    Within modern distributed control systems and programmable logic controllers, it is much easier to prevent integral windup by either limiting the controller output, limiting the integral to produce feasible output, [5] or by using external reset feedback, which is a means of feeding back the selected output to the integral circuit of all ...

  9. Servomechanism - Wikipedia

    en.wikipedia.org/wiki/Servomechanism

    The grey/green cylinder is the brush-type DC motor. The black section at the bottom contains the planetary reduction gear, and the black object on top of the motor is the optical rotary encoder for position feedback. Small R/C servo mechanism. 1. electric motor 2. position feedback potentiometer 3. reduction gear 4. actuator arm