Search results
Results from the WOW.Com Content Network
In three dimensions, the torque is a pseudovector; for point particles, it is given by the cross product of the displacement vector and the force vector. The direction of the torque can be determined by using the right hand grip rule : if the fingers of the right hand are curled from the direction of the lever arm to the direction of the force ...
The cross product a × b is defined as a vector c that is perpendicular (orthogonal) to both a and b, with a direction given by the right-hand rule [1] and a magnitude equal to the area of the parallelogram that the vectors span. [2] The cross product is defined by the formula [8] [9]
The forces have a turning effect or moment called a torque about an axis which is normal (perpendicular) to the plane of the forces. The SI unit for the torque of the couple is newton metre. If the two forces are F and −F, then the magnitude of the torque is given by the following formula: = where
In mathematics and physics, the right-hand rule is a convention and a mnemonic, utilized to define the orientation of axes in three-dimensional space and to determine the direction of the cross product of two vectors, as well as to establish the direction of the force on a current-carrying conductor in a magnetic field.
The cross product in relation to the exterior product. In red are the unit normal vector, and the "parallel" unit bivector. For example, torque is generally defined as the magnitude of the perpendicular force component times distance, or work per unit angle.
Cross product – also known as the "vector product", a binary operation on two vectors that results in another vector. The cross product of two vectors in 3-space is defined as the vector perpendicular to the plane determined by the two vectors whose magnitude is the product of the magnitudes of the two vectors and the sine of the angle ...
Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque [1] [2].Torsion could be defined as strain [3] [4] or angular deformation [5], and is measured by the angle a chosen section is rotated from its equilibrium position [6].
Torque-free precessions are non-trivial solution for the situation where the torque on the right hand side is zero. When I is not constant in the external reference frame (i.e. the body is moving and its inertia tensor is not constantly diagonal) then I cannot be pulled through the derivative operator acting on L.