enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Joint probability distribution - Wikipedia

    en.wikipedia.org/wiki/Joint_probability_distribution

    If the points in the joint probability distribution of X and Y that receive positive probability tend to fall along a line of positive (or negative) slope, ρ XY is near +1 (or −1). If ρ XY equals +1 or −1, it can be shown that the points in the joint probability distribution that receive positive probability fall exactly along a straight ...

  3. Copula (statistics) - Wikipedia

    en.wikipedia.org/wiki/Copula_(statistics)

    Copulas have been used widely in quantitative finance to model and minimize tail risk [2] and portfolio-optimization applications. [3] Sklar's theorem states that any multivariate joint distribution can be written in terms of univariate marginal distribution functions and a copula which describes the dependence structure between the variables.

  4. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    The probability content of the multivariate normal in a quadratic domain defined by () = ′ + ′ + > (where is a matrix, is a vector, and is a scalar), which is relevant for Bayesian classification/decision theory using Gaussian discriminant analysis, is given by the generalized chi-squared distribution. [17]

  5. Bayes' theorem - Wikipedia

    en.wikipedia.org/wiki/Bayes'_theorem

    The application of Bayes' theorem to projected probabilities of opinions is a ... The Joint Probability reconciles these two predictions by multiplying them together. ...

  6. Exchangeable random variables - Wikipedia

    en.wikipedia.org/wiki/Exchangeable_random_variables

    Formally, an exchangeable sequence of random variables is a finite or infinite sequence X 1, X 2, X 3, ... of random variables such that for any finite permutation σ of the indices 1, 2, 3, ..., (the permutation acts on only finitely many indices, with the rest fixed), the joint probability distribution of the permuted sequence

  7. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    This rule allows one to express a joint probability in terms of only conditional probabilities. [4] The rule is notably used in the context of discrete stochastic processes and in applications, e.g. the study of Bayesian networks, which describe a probability distribution in terms of conditional probabilities.

  8. Graphical model - Wikipedia

    en.wikipedia.org/wiki/Graphical_model

    If the network structure of the model is a directed acyclic graph, the model represents a factorization of the joint probability of all random variables. More precisely, if the events are X 1 , … , X n {\displaystyle X_{1},\ldots ,X_{n}} then the joint probability satisfies

  9. Complex random variable - Wikipedia

    en.wikipedia.org/wiki/Complex_random_variable

    The probability density function of a complex random variable is defined as () = (), ((), ()), i.e. the value of the density function at a point is defined to be equal to the value of the joint density of the real and imaginary parts of the random variable evaluated at the point ((), ()).