Search results
Results from the WOW.Com Content Network
Permineralization is a process of fossilization of bones and tissues in which mineral deposits form internal casts of organisms. Carried by water, these minerals fill the spaces within organic tissue. Because of the nature of the casts, permineralization is particularly useful in studies of the internal structures of organisms, usually of ...
In bone, mineralization starts from a heterogeneous solution having calcium and phosphate ions. The mineral nucleates, inside the hole area of the collagen fibrils, as thin layers of calcium phosphate, which then grow to occupy the maximum space available there. The mechanisms of mineral deposition within the organic portion of the bone are ...
The canal of the nutrient foramen is directed away from more active end of bone when one end grows more than the other. When bone grows at same rate at both ends, the nutrient artery is perpendicular to the bone. Most other bones (e.g. vertebrae) also have primary ossification centers, and bone is laid down in a similar manner. Secondary centers
Mineralization may refer to: Biomineralization (mineralization in biology), when an inorganic substance precipitates in an organic matrix Mineralized tissues are tissues that have undergone mineralization, including bones, teeth, antlers, and marine shells Bone remodeling, involving demineralization and remineralization in bones
One of the principal causes of arterial stiffening with age is vascular calcification. Vascular calcification is the deposition of mineral in the form of calcium phosphate salts in the smooth muscle-rich medial layer of large arteries including the aorta. DNA damage, especially oxidative DNA damage, causes accelerated vascular calcification. [11]
Diagenesis (/ ˌ d aɪ. ə ˈ dʒ ɛ n ə s ɪ s /) is the process of physical and chemical changes in sediments first caused by water-rock interactions, microbial activity, and compaction after their deposition. Increased pressure and temperature only start to play a role as sediments become buried much deeper in the Earth's crust. [1]
Water accelerates the process by leaching essential organic minerals from bone. As such, soil type plays a role, because it will affect the water content of the environment. For example, some soils, like clay soils, retain water better than others, like sandy or silty soils.
The osteoclast releases hydrogen ions through the action of carbonic anhydrase (H 2 O + CO 2 → HCO 3 − + H +) through the ruffled border into the resorptive cavity, acidifying and aiding dissolution of the mineralized bone matrix into Ca 2+, H 3 PO 4, H 2 CO 3, water and other substances. Dysfunction of the carbonic anhydrase has been ...