Search results
Results from the WOW.Com Content Network
In propositional logic, material implication [1] [2] is a valid rule of replacement that allows a conditional statement to be replaced by a disjunction in which the antecedent is negated. The rule states that P implies Q is logically equivalent to not- P {\displaystyle P} or Q {\displaystyle Q} and that either form can replace the other in ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
The column-11 operator (IF/THEN), shows Modus ponens rule: when p→q=T and p=T only one line of the truth table (the first) satisfies these two conditions. On this line, q is also true. Therefore, whenever p → q is true and p is true, q must also be true.
The absorption rule may be expressed as a sequent: ()where is a metalogical symbol meaning that () is a syntactic consequence of () in some logical system; . and expressed as a truth-functional tautology or theorem of propositional logic.
The Łukasiewicz Ł3 has the same tables for AND, OR, and NOT as the Kleene logic given above, but differs in its definition of implication in that "unknown implies unknown" is true. This section follows the presentation from Malinowski's chapter of the Handbook of the History of Logic , vol 8.
The formulations here use implication and negation {,} as functionally complete set of basic connectives. Every logic system requires at least one non-nullary rule of inference. Classical propositional calculus typically uses the rule of modus ponens:
Disjunction has also been given numerous non-classical treatments, motivated by problems including Aristotle's sea battle argument, Heisenberg's uncertainty principle, as well as the numerous mismatches between classical disjunction and its nearest equivalents in natural languages. [1] [2] An operand of a disjunction is a disjunct. [3]
The material conditional (also known as material implication) is an operation commonly used in logic. When the conditional symbol → {\displaystyle \rightarrow } is interpreted as material implication, a formula P → Q {\displaystyle P\rightarrow Q} is true unless P {\displaystyle P} is true and Q {\displaystyle Q} is false.