Search results
Results from the WOW.Com Content Network
There are various types of potential energy, each associated with a particular type of force. For example, the work of an elastic force is called elastic potential energy; work of the gravitational force is called gravitational potential energy; work of the Coulomb force is called electric potential energy; work of the strong nuclear force or weak nuclear force acting on the baryon charge is ...
Components of mechanical systems store elastic potential energy if they are deformed when forces are applied to the system. Energy is transferred to an object by work when an external force displaces or deforms the object. The quantity of energy transferred is the vector dot product of the force and the displacement of the object. As forces are ...
The term is commonly used for the energy levels of the electrons in atoms, ions, or molecules, which are bound by the electric field of the nucleus, but can also refer to energy levels of nuclei or vibrational or rotational energy levels in molecules. The energy spectrum of a system with such discrete energy levels is said to be quantized.
The gravitational potential energy is the potential energy an object has because it is within a gravitational field. The magnitude & direction of gravitational force experienced by a point mass m {\displaystyle m} , due to the presence of another point mass M {\displaystyle M} at a distance r {\displaystyle r} , is given by Newton's law of ...
A potential energy surface (PES) or energy landscape describes the energy of a system, especially a collection of atoms, in terms of certain parameters, normally the positions of the atoms. The surface might define the energy as a function of one or more coordinates; if there is only one coordinate, the surface is called a potential energy ...
The Lennard-Jones potential is a simple model that still manages to describe the essential features of interactions between simple atoms and molecules: Two interacting particles repel each other at very close distance, attract each other at moderate distance, and eventually stop interacting at infinite distance, as shown in the Figure.
Just as in mechanics, where potential energy is defined as capacity to do work, similarly different potentials have different meanings. The concept of thermodynamic potentials was introduced by Pierre Duhem in 1886. Josiah Willard Gibbs in his papers used the term fundamental functions. While thermodynamic potentials cannot be measured directly ...
The concept of potential energy applied to small test particles led to the concept of a scalar field, a mathematical model representing the forces throughout space. While this mathematical model is not a mechanical medium, the mental picture of such a field resembles a medium. [2]: 197