Search results
Results from the WOW.Com Content Network
In quantum physics and quantum chemistry, an avoided crossing (AC, sometimes called intended crossing, [1] non-crossing or anticrossing) is the phenomenon where two eigenvalues of a Hermitian matrix representing a quantum observable and depending on continuous real parameters cannot become equal in value ("cross") except on a manifold of dimension . [2]
The effect is named after Wilhelm Hanle, who was the first to explain the effect, in terms of classical physics, in Zeitschrift für Physik in 1924. [ 8 ] [ 9 ] Initially, the causes of the effect were controversial, and many theorists mistakenly thought it was a version of the Faraday effect .
In quantum field theory, a branch of theoretical physics, crossing is the property of scattering amplitudes that allows antiparticles to be interpreted as particles going backwards in time. Crossing states that the same formula that determines the S-matrix elements and scattering amplitudes for particle to scatter with and produce particle and ...
This is the earliest known solvable system, which was discussed by Majorana in 1932. Among the other examples there are models of a pair of degenerate level crossing, [23] and the 1D quantum Ising chain in a linearly changing magnetic field. [24] [25] Landau–Zener transitions in infinite linear chains. [26]
When φ(t) is constrained to its principal value, either the interval (−π, π] or [0, 2π), it is called wrapped phase. Otherwise it is called unwrapped phase, which is a continuous function of argument t, assuming s a (t) is a continuous function of t. Unless otherwise indicated, the continuous form should be inferred. Instantaneous phase ...
The time interval may be controlled by a level crossing predictor, an electronic device which is connected to the rails of a railroad track, and activates the crossing's warning devices (lights, bells, gates, etc.) at a consistent interval prior to the arrival of a train at a level crossing. [1]
In the International System of Units (SI), the unit of time is the second (symbol: s). It has been defined since 1967 as "the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom", and is an SI base unit. [12]
The amount of time light takes to travel one Planck length. quectosecond: 10 −30 s: One nonillionth of a second. rontosecond: 10 −27 s: One octillionth of a second. yoctosecond: 10 −24 s: One septillionth of a second. jiffy (physics) 3 × 10 −24 s: The amount of time light takes to travel one fermi (about the size of a nucleon) in a ...