enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quartile - Wikipedia

    en.wikipedia.org/wiki/Quartile

    The first quartile (Q 1) is defined as the 25th percentile where lowest 25% data is below this point. It is also known as the lower quartile. The second quartile (Q 2) is the median of a data set; thus 50% of the data lies below this point. The third quartile (Q 3) is the 75th percentile where

  3. Interquartile range - Wikipedia

    en.wikipedia.org/wiki/Interquartile_range

    It is defined as the difference between the 75th and 25th percentiles of the data. [2] [3] [4] To calculate the IQR, the data set is divided into quartiles, or four rank-ordered even parts via linear interpolation. [1] These quartiles are denoted by Q 1 (also called the lower quartile), Q 2 (the median), and Q 3 (also called the

  4. Percentile - Wikipedia

    en.wikipedia.org/wiki/Percentile

    The 25th percentile is also known as the first quartile (Q 1), the 50th percentile as the median or second quartile (Q 2), and the 75th percentile as the third quartile (Q 3). For example, the 50th percentile (median) is the score below (or at or below, depending on the definition) which 50% of the scores in the distribution are found.

  5. Percentile rank - Wikipedia

    en.wikipedia.org/wiki/Percentile_rank

    The figure illustrates the percentile rank computation and shows how the 0.5 × F term in the formula ensures that the percentile rank reflects a percentage of scores less than the specified score. For example, for the 10 scores shown in the figure, 60% of them are below a score of 4 (five less than 4 and half of the two equal to 4) and 95% are ...

  6. Quantile - Wikipedia

    en.wikipedia.org/wiki/Quantile

    Fourth quartile Although not universally accepted, one can also speak of the fourth quartile. This is the maximum value of the set, so the fourth quartile in this example would be 20. Under the Nearest Rank definition of quantile, the rank of the fourth quartile is the rank of the biggest number, so the rank of the fourth quartile would be 11. 20

  7. Five-number summary - Wikipedia

    en.wikipedia.org/wiki/Five-number_summary

    These quartiles are used to calculate the interquartile range, which helps to describe the spread of the data, and determine whether or not any data points are outliers. In order for these statistics to exist, the observations must be from a univariate variable that can be measured on an ordinal, interval or ratio scale .

  8. Quantile function - Wikipedia

    en.wikipedia.org/wiki/Quantile_function

    For example, they require the median and 25% and 75% quartiles as in the example above or 5%, 95%, 2.5%, 97.5% levels for other applications such as assessing the statistical significance of an observation whose distribution is known; see the quantile entry.

  9. Seven-number summary - Wikipedia

    en.wikipedia.org/wiki/Seven-number_summary

    sample maximum (nominal: lowest hundredth percentile) Note that the middle five of the seven numbers can all be obtained by successive partitioning of the ordered data into subsets of equal size. Extending the seven-number summary by continued partitioning produces the nine-number summary , the eleven-number summary , and so on.