enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chebyshev polynomials - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_polynomials

    Plot of the Chebyshev polynomial of the first kind () with = in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D. The Chebyshev polynomials are two sequences of polynomials related to the cosine and sine functions, notated as () and ().

  3. File:Chebyshev Polynomials of the 2nd Kind (n=0-5, x=(-1,1 ...

    en.wikipedia.org/wiki/File:Chebyshev_Polynomials...

    File:Chebyshev Polynomials of the 2nd Kind (n=0-5, x=(-1,1)).svg. Add languages. Page contents not supported in other languages. ... Printable version; Page information;

  4. Chebyshev nodes - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_nodes

    The Chebyshev nodes of the second kind, also called the Chebyshev extrema, are the extrema of the Chebyshev polynomials of the first kind, which are also the zeros of the Chebyshev polynomials of the second kind. Both of these sets of numbers are commonly referred to as Chebyshev nodes in literature. [1]

  5. Chebyshev equation - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_equation

    Chebyshev's equation is the second order linear differential equation + = where p is a real (or complex) constant. The equation is named after Russian mathematician Pafnuty Chebyshev. The solutions can be obtained by power series:

  6. Discrete Chebyshev transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Chebyshev_transform

    In applied mathematics, a discrete Chebyshev transform (DCT) is an analog of the discrete Fourier transform for a function of a real interval, converting in either direction between function values at a set of Chebyshev nodes and coefficients of a function in Chebyshev polynomial basis. Like the Chebyshev polynomials, it is named after Pafnuty ...

  7. Elliptic rational functions - Wikipedia

    en.wikipedia.org/wiki/Elliptic_rational_functions

    The zeroes of the elliptic rational function will be the zeroes of the polynomial in the numerator of the function. The following derivation of the zeroes of the elliptic rational function is analogous to that of determining the zeroes of the Chebyshev polynomials (Lutovac, Tošić & Evans 2001, § 12.6). Using the fact that for any z

  8. Hypergeometric function - Wikipedia

    en.wikipedia.org/wiki/Hypergeometric_function

    It is a solution of a second-order linear ordinary differential equation (ODE). Every second-order linear ODE with three regular singular points can be transformed into this equation. For systematic lists of some of the many thousands of published identities involving the hypergeometric function, see the reference works by Erdélyi et al. (1953 ...

  9. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    Depending on the bilinear form, the vector space may contain null vectors, non-zero self-orthogonal vectors, in which case perpendicularity is replaced with hyperbolic orthogonality. In the case of function spaces , families of functions are used to form an orthogonal basis , such as in the contexts of orthogonal polynomials , orthogonal ...