enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Plasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Plasticity_(physics)

    An idealized uniaxial stress-strain curve showing elastic and plastic deformation regimes for the deformation theory of plasticity. There are several mathematical descriptions of plasticity. [12] One is deformation theory (see e.g. Hooke's law) where the Cauchy stress tensor (of order d-1 in d dimensions) is a function of the strain tensor ...

  3. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_curve

    The stress is proportional to the strain, that is, obeys the general Hooke's law, and the slope is Young's modulus. In this region, the material undergoes only elastic deformation. The end of the stage is the initiation point of plastic deformation. The stress component of this point is defined as yield strength (or upper yield point, UYP for ...

  4. Deformation (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(engineering)

    Thus, a point defining true stress–strain curve is displaced upwards and to the left to define the equivalent engineering stress–strain curve. The difference between the true and engineering stresses and strains will increase with plastic deformation. At low strains (such as elastic deformation), the differences between the two is ...

  5. Viscoplasticity - Wikipedia

    en.wikipedia.org/wiki/Viscoplasticity

    A change in the rate of strain during the test results in an immediate change in the stress–strain curve. The concept of a plastic yield limit is no longer strictly applicable. The hypothesis of partitioning the strains by decoupling the elastic and plastic parts is still applicable where the strains are small, [3] i.e.,

  6. Ramberg–Osgood relationship - Wikipedia

    en.wikipedia.org/wiki/Ramberg–Osgood_relationship

    Ramberg–Osgood relationship. The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain —that is, the stress–strain curve —in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening), showing a smooth elastic-plastic ...

  7. Viscoelasticity - Wikipedia

    en.wikipedia.org/wiki/Viscoelasticity

    t. e. In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist both shear flow and strain linearly with time when a stress is applied.

  8. Work hardening - Wikipedia

    en.wikipedia.org/wiki/Work_hardening

    The strain can be decomposed into a recoverable elastic strain (ε e) and an inelastic strain (ε p). The stress at initial yield is σ 0 . Work hardening , also known as strain hardening , is the process by which a material's load-bearing capacity (strength) increases during plastic (permanent) deformation.

  9. Elasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Elasticity_(physics)

    e. In physics and materials science, elasticity is the ability of a body to resist a distorting influence and to return to its original size and shape when that influence or force is removed. Solid objects will deform when adequate loads are applied to them; if the material is elastic, the object will return to its initial shape and size after ...