Search results
Results from the WOW.Com Content Network
Exon trapping or 'gene trapping' is a molecular biology technique that exploits the existence of the intron-exon splicing to find new genes. [13] The first exon of a 'trapped' gene splices into the exon that is contained in the insertional DNA .
Distinction between genome, exome, and transcriptome. The exome consists of all of the exons within the genome. In contrast, the trascriptome varies between cell types (e.g. neurons vs cardiac cells), only involving a portion of the exons that are actually transcribed into mRNA.
Exon trapping is a molecular biology technique to identify potential exons in a fragment of eukaryote DNA of unknown intron-exon structure. [1] This is done to determine if the fragment is part of an expressed gene .
In molecular biology, exon skipping is a form of RNA splicing used to cause cells to “skip” over faulty or misaligned sections of genetic code, leading to a truncated but still functional protein despite the genetic mutation.
RNA splicing is a process in molecular biology where a newly-made precursor messenger RNA (pre-mRNA) transcript is transformed into a mature messenger RNA ().It works by removing all the introns (non-coding regions of RNA) and splicing back together exons (coding regions).
Exome sequencing is especially effective in the study of rare Mendelian diseases, because it is an efficient way to identify the genetic variants in all of an individual's genes.
An exon junction complex (EJC) is a protein complex which forms on a pre-messenger RNA strand at the junction of two exons which have been joined together during RNA splicing. The EJC has major influences on translation , surveillance , localization of the spliced mRNA , and m 6 A methylation .
Exon shuffling is a molecular mechanism for the formation of new genes. It is a process through which two or more exons from different genes can be brought together ectopically , or the same exon can be duplicated , to create a new exon-intron structure. [ 1 ]