Search results
Results from the WOW.Com Content Network
Sequential quadratic programming (SQP) is an iterative method for constrained nonlinear optimization which may be considered a quasi-Newton method. SQP methods are used on mathematical problems for which the objective function and the constraints are twice continuously differentiable , but not necessarily convex.
The Fortran subroutine NLPQLP, a newer [when?] version of NLPQL, solves smooth nonlinear programming problems by a sequential quadratic programming (SQP) algorithm. The new version is specifically tuned to run under distributed systems.
Sequential minimal optimization (SMO) is an algorithm for solving the quadratic programming (QP) problem that arises during the training of support-vector machines (SVM). It was invented by John Platt in 1998 at Microsoft Research. [1] SMO is widely used for training support vector machines and is implemented by the popular LIBSVM tool.
Sequential linear-quadratic programming; Sequential minimal optimization; Sequential quadratic programming; Simplex algorithm; Simulated annealing; Simultaneous perturbation stochastic approximation; Social cognitive optimization; Space allocation problem; Space mapping; Special ordered set; Spiral optimization algorithm; Stochastic dynamic ...
Sequential quadratic programming, an iterative method for constrained nonlinear optimization; South Quay Plaza, a residential-led development under construction in Canary Wharf on the Isle of Dogs, London; SQP, the ICAO code for SkyUp, Kyiv, Ukraine
Sequential quadratic programming (SQP) — replace problem by a quadratic programming problem, solve that, and repeat; Newton's method in optimization. See also under Newton algorithm in the section Finding roots of nonlinear equations; Nonlinear conjugate gradient method; Derivative-free methods
Gone are the days of the sad mocktail — the cranberry cocktail topped with a bit of seltzer or a blend of every juice behind the bar. A growing number of bartenders are paying just as much ...
Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions. Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constraints on the variables.