enow.com Web Search

  1. Ad

    related to: sketch curve using parametric equations solver free

Search results

  1. Results from the WOW.Com Content Network
  2. Butterfly curve (transcendental) - Wikipedia

    en.wikipedia.org/wiki/Butterfly_curve...

    The butterfly curve. The butterfly curve is a transcendental plane curve discovered by Temple H. Fay of ... The curve is given by the following parametric equations: [2]

  3. Parametric equation - Wikipedia

    en.wikipedia.org/wiki/Parametric_equation

    In the case of a single parameter, parametric equations are commonly used to express the trajectory of a moving point, in which case, the parameter is often, but not necessarily, time, and the point describes a curve, called a parametric curve. In the case of two parameters, the point describes a surface, called a parametric surface.

  4. Curve sketching - Wikipedia

    en.wikipedia.org/wiki/Curve_sketching

    If the curve passes through the origin then determine the tangent lines there. For algebraic curves, this can be done by removing all but the terms of lowest order from the equation and solving. Similarly, removing all but the terms of highest order from the equation and solving gives the points where the curve meets the line at infinity.

  5. Parametrization (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parametrization_(geometry)

    In mathematics, and more specifically in geometry, parametrization (or parameterization; also parameterisation, parametrisation) is the process of finding parametric equations of a curve, a surface, or, more generally, a manifold or a variety, defined by an implicit equation. The inverse process is called implicitization. [1] "

  6. Integral curve - Wikipedia

    en.wikipedia.org/wiki/Integral_curve

    This equation says that the vector tangent to the curve at any point x(t) along the curve is precisely the vector F(x(t)), and so the curve x(t) is tangent at each point to the vector field F. If a given vector field is Lipschitz continuous , then the Picard–Lindelöf theorem implies that there exists a unique flow for small time.

  7. Bézier curve - Wikipedia

    en.wikipedia.org/wiki/Bézier_curve

    The mathematical basis for Bézier curves—the Bernstein polynomials—was established in 1912, but the polynomials were not applied to graphics until some 50 years later when mathematician Paul de Casteljau in 1959 developed de Casteljau's algorithm, a numerically stable method for evaluating the curves, and became the first to apply them to computer-aided design at French automaker Citroën ...

  8. Differentiable curve - Wikipedia

    en.wikipedia.org/wiki/Differentiable_curve

    A parametric C r-curve or a C r-parametrization is a vector-valued function: that is r-times continuously differentiable (that is, the component functions of γ are continuously differentiable), where , {}, and I is a non-empty interval of real numbers.

  9. Fermat's spiral - Wikipedia

    en.wikipedia.org/wiki/Fermat's_spiral

    The Fermat spiral with polar equation = can be converted to the Cartesian coordinates (x, y) by using the standard conversion formulas x = r cos φ and y = r sin φ.Using the polar equation for the spiral to eliminate r from these conversions produces parametric equations for one branch of the curve:

  1. Ad

    related to: sketch curve using parametric equations solver free