Search results
Results from the WOW.Com Content Network
Model-based assumptions. These include the following three types: Distributional assumptions. Where a statistical model involves terms relating to random errors, assumptions may be made about the probability distribution of these errors. [5] In some cases, the distributional assumption relates to the observations themselves. Structural assumptions.
Does the hypothesis being tested apply to the distributions as a whole, or just some population parameter, for example the mean or the variance? Is the hypothesis being tested merely that there is a difference in the relevant population characteristics (in which case a two-sided test may be indicated), or does it involve a specific bias ("A is ...
These assumptions or beliefs will also affect how a person utilizes the observations as evidence. For example, the Earth's apparent lack of motion may be taken as evidence for a geocentric cosmology. However, after sufficient evidence is presented for heliocentric cosmology and the apparent lack of motion is explained, the initial observation ...
Difference in differences (DID [1] or DD [2]) is a statistical technique used in econometrics and quantitative research in the social sciences that attempts to mimic an experimental research design using observational study data, by studying the differential effect of a treatment on a 'treatment group' versus a 'control group' in a natural experiment. [3]
The history of scientific method considers changes in the methodology of scientific inquiry, not the history of science itself. The development of rules for scientific reasoning has not been straightforward; scientific method has been the subject of intense and recurring debate throughout the history of science, and eminent natural philosophers and scientists have argued for the primacy of ...
Observation is critical to scientific research and activity, and as such, observer bias may be as well. [4] When such biases exist, scientific studies can result in an over- or underestimation of what is true and accurate, which compromises the validity of the findings and results of the study, even if all other designs and procedures in the ...
Strong and weak sampling are two sampling approach [1] in Statistics, and are popular in computational cognitive science and language learning. [2] In strong sampling, it is assumed that the data are intentionally generated as positive examples of a concept, [3] while in weak sampling, it is assumed that the data are generated without any restrictions.
y i is the observation of the dependent variable at time i or for the i th study participant. We collect the observations of all variables subscripted i = 1, ..., n , and stack them one below another, to obtain the matrix X and the vectors Y , Z , and U :