Search results
Results from the WOW.Com Content Network
A resistor–capacitor circuit (RC circuit), or RC filter or RC network, is an electric circuit composed of resistors and capacitors. It may be driven by a voltage or current source and these will produce different responses. A first order RC circuit is composed of one resistor and one capacitor and is the simplest type of RC circuit.
Series RC circuit. The RC time constant, denoted τ (lowercase tau), the time constant (in seconds) of a resistor–capacitor circuit (RC circuit), is equal to the product of the circuit resistance (in ohms) and the circuit capacitance (in farads):
Parallel RC, series L circuit with resistance in parallel with the capacitor. In the same vein, a resistor in parallel with the capacitor in a series LC circuit can be used to represent a capacitor with a lossy dielectric. This configuration is shown in Figure 5.
Voltage curve of a resistor in a charging series RC circuit. The vertical axis shows the voltage across the resistor as a percentage of the applied voltage to the RC circuit. τ represents the RC time constant.
Another common design is the "Twin-T" oscillator as it uses two "T" RC circuits operated in parallel. One circuit is an R-C-R "T" which acts as a low-pass filter. The second circuit is a C-R-C "T" which operates as a high-pass filter. Together, these circuits form a bridge which is tuned at the desired frequency of oscillation.
In a circuit diagram these element-kinds are specifically drawn, each with its own unique symbol. Resistive networks are one-element-kind networks, consisting only of R elements. Likewise capacitive or inductive networks are one-element-kind. The RC, RL and LC circuits are simple two-element-kind networks.
Many circuits can be analyzed as a combination of series and parallel circuits, along with other configurations. In a series circuit, the current that flows through each of the components is the same, and the voltage across the circuit is the sum of the individual voltage drops across each component. [ 1 ]
An example of series RLC circuit and respective phasor diagram for a specific ω.The arrows in the upper diagram are phasors, drawn in a phasor diagram (complex plane without axis shown), which must not be confused with the arrows in the lower diagram, which are the reference polarity for the voltages and the reference direction for the current.