enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  3. Mixture of experts - Wikipedia

    en.wikipedia.org/wiki/Mixture_of_experts

    Hierarchical mixtures of experts [7] [8] uses multiple levels of gating in a tree. Each gating is a probability distribution over the next level of gatings, and the ...

  4. Multiclass classification - Wikipedia

    en.wikipedia.org/wiki/Multiclass_classification

    Hierarchical classification tackles the multi-class classification problem by dividing the output space i.e. into a tree. Each parent node is divided into multiple child nodes and the process is continued until each child node represents only one class. Several methods have been proposed based on hierarchical classification.

  5. Bayesian hierarchical modeling - Wikipedia

    en.wikipedia.org/wiki/Bayesian_hierarchical_modeling

    Bayesian hierarchical modelling is a statistical model written in multiple levels (hierarchical form) that estimates the parameters of the posterior distribution using the Bayesian method. [1] The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the ...

  6. Predictive coding - Wikipedia

    en.wikipedia.org/wiki/Predictive_coding

    This makes predictive coding similar to some other models of hierarchical learning, such as Helmholtz machines and Deep belief networks, which however employ different learning algorithms. Thus, the dual use of prediction errors for both inference and learning is one of the defining features of predictive coding. [6]

  7. Model of hierarchical complexity - Wikipedia

    en.wikipedia.org/wiki/Model_of_hierarchical...

    The model of hierarchical complexity (MHC) is a formal theory and a mathematical psychology framework for scoring how complex a behavior is. [4] Developed by Michael Lamport Commons and colleagues, [3] it quantifies the order of hierarchical complexity of a task based on mathematical principles of how the information is organized, [5] in terms of information science.

  8. Free energy principle - Wikipedia

    en.wikipedia.org/wiki/Free_energy_principle

    In a 2018 interview, Friston explained what it entails for the free energy principle to not be subject to falsification: "I think it is useful to make a fundamental distinction at this point—that we can appeal to later. The distinction is between a state and process theory; i.e., the difference between a normative principle that things may or ...

  9. Statistical classification - Wikipedia

    en.wikipedia.org/wiki/Statistical_classification

    When classification is performed by a computer, statistical methods are normally used to develop the algorithm.. Often, the individual observations are analyzed into a set of quantifiable properties, known variously as explanatory variables or features.