enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    A cylindrical vector is specified by a distance in the xy-plane, an angle, and a distance from the xy-plane (a height). The first distance, usually represented as r or ρ (the Greek letter rho), is the magnitude of the projection of the vector onto the xy-plane.

  3. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  4. Divergence - Wikipedia

    en.wikipedia.org/wiki/Divergence

    In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.

  5. Magnitude (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Magnitude_(mathematics)

    By definition, all Euclidean vectors have a magnitude (see above). However, a vector in an abstract vector space does not possess a magnitude. A vector space endowed with a norm, such as the Euclidean space, is called a normed vector space. [8] The norm of a vector v in a normed vector space can be considered to be the magnitude of v.

  6. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    Interchanging the vector field v and ∇ operator, we arrive at the cross product of a vector field with curl of a vector field: = () , where ∇ F is the Feynman subscript notation, which considers only the variation due to the vector field F (i.e., in this case, v is treated as being constant in space).

  7. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    vector Jerk: j →: Change of acceleration per unit time: the third time derivative of position m/s 3: L T −3: vector Jounce (or snap) s →: Change of jerk per unit time: the fourth time derivative of position m/s 4: L T −4: vector Magnetic field strength: H: Strength of a magnetic field A/m L −1 I: vector field Magnetic flux density: B

  8. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    A Euclidean vector may possess a definite initial point and terminal point; such a condition may be emphasized calling the result a bound vector. [12] When only the magnitude and direction of the vector matter, and the particular initial or terminal points are of no importance, the vector is called a free vector.

  9. Vector quantity - Wikipedia

    en.wikipedia.org/wiki/Vector_quantity

    In the natural sciences, a vector quantity (also known as a vector physical quantity, physical vector, or simply vector) is a vector-valued physical quantity. [ 1 ] [ 2 ] It is typically formulated as the product of a unit of measurement and a vector numerical value ( unitless ), often a Euclidean vector with magnitude and direction .