Search results
Results from the WOW.Com Content Network
The planet Jupiter is a slight oblate spheroid with a flattening of 0.06487. The oblate spheroid is the approximate shape of rotating planets and other celestial bodies, including Earth, Saturn, Jupiter, and the quickly spinning star Altair. Saturn is the most oblate planet in the Solar System, with a flattening of 0.09796. [5]
The surface area of this general ellipsoid can also be expressed in terms of ... The mass of an ellipsoid of uniform density ... (oblate spheroid) ...
The WGS 84 datum surface is an oblate spheroid with equatorial radius a = 6 378 137 m at the equator and flattening f = 1 ⁄ 298.257 223 563. The refined value of the WGS 84 gravitational constant (mass of Earth's atmosphere included) is GM = 3.986 004 418 × 10 14 m 3 /s 2. The angular velocity of the Earth is defined to be ω = 72.921 15 × ...
Better approximations can be made by modeling the entire surface as an oblate spheroid, using spherical harmonics to approximate the geoid, or modeling a region with a best-fit reference ellipsoid. For surveys of small areas, a planar (flat) model of Earth's surface suffices because the local topography overwhelms the curvature.
In 1687 Isaac Newton published the Principia in which he included a proof that a rotating self-gravitating fluid body in equilibrium takes the form of a flattened ("oblate") ellipsoid of revolution, generated by an ellipse rotated around its minor diameter; a shape which he termed an oblate spheroid. [2] [3]
A rotating body tends to form an oblate spheroid rather than ... the largest deviations of the actual surface from the ... all the mass is as close to the ...
It is an oblate spheroid, with an equatorial diameter 8% larger than its polar diameter. [2] Measurements from the Dawn spacecraft found a mean diameter of 939.4 km (583.7 mi) [2] and a mass of 9.38 × 10 20 kg. [62] This gives Ceres a density of 2.16 g/cm 3, [2] suggesting that a quarter of its mass is water ice. [63]
For a Maclaurin spheroid of eccentricity greater than 0.812670, [3] a Jacobi ellipsoid of the same angular momentum has lower total energy. If such a spheroid is composed of a viscous fluid (or in the presence of gravitational radiation reaction), and if it suffers a perturbation which breaks its rotational symmetry, then it will gradually elongate into the Jacobi ellipsoidal form, while ...