enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Specific orbital energy - Wikipedia

    en.wikipedia.org/wiki/Specific_orbital_energy

    The International Space Station has an orbital period of 91.74 minutes (5504 s), hence by Kepler's Third Law the semi-major axis of its orbit is 6,738 km. [citation needed] The specific orbital energy associated with this orbit is −29.6 MJ/kg: the potential energy is −59.2 MJ/kg, and the kinetic energy 29.6 MJ/kg.

  3. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    From a circular orbit, thrust applied in a direction opposite to the satellite's motion changes the orbit to an elliptical one; the satellite will descend and reach the lowest orbital point (the periapse) at 180 degrees away from the firing point; then it will ascend back. The period of the resultant orbit will be less than that of the original ...

  4. Characteristic energy - Wikipedia

    en.wikipedia.org/wiki/Characteristic_energy

    The characteristic energy with respect to Sun was negative, and MAVEN – instead of heading to infinity – entered an elliptical orbit around the Sun. But the maximal velocity on the new orbit could be approximated to 33.5 km/s by assuming that it reached practical "infinity" at 3.5 km/s and that such Earth-bound "infinity" also moves with ...

  5. Orbit modeling - Wikipedia

    en.wikipedia.org/wiki/Orbit_modeling

    Orbit modeling is the process of creating mathematical models to simulate motion of a massive body as it moves in orbit around another massive body due to gravity.Other forces such as gravitational attraction from tertiary bodies, air resistance, solar pressure, or thrust from a propulsion system are typically modeled as secondary effects.

  6. Orbital maneuver - Wikipedia

    en.wikipedia.org/wiki/Orbital_maneuver

    A low energy transfer, or low energy trajectory, is a route in space which allows spacecraft to change orbits using very little fuel. [ 10 ] [ 11 ] These routes work in the Earth - Moon system and also in other systems, such as traveling between the satellites of Jupiter .

  7. Vis-viva equation - Wikipedia

    en.wikipedia.org/wiki/Vis-viva_equation

    In astrodynamics, the vis-viva equation is one of the equations that model the motion of orbiting bodies.It is the direct result of the principle of conservation of mechanical energy which applies when the only force acting on an object is its own weight which is the gravitational force determined by the product of the mass of the object and the strength of the surrounding gravitational field.

  8. Orbital state vectors - Wikipedia

    en.wikipedia.org/wiki/Orbital_state_vectors

    Orbital position vector, orbital velocity vector, other orbital elements. In astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position and velocity that together with their time () uniquely determine the trajectory of the orbiting body in space.

  9. Spacecraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Spacecraft_flight_dynamics

    A space vehicle's flight is determined by application of Newton's second law of motion: =, where F is the vector sum of all forces exerted on the vehicle, m is its current mass, and a is the acceleration vector, the instantaneous rate of change of velocity (v), which in turn is the instantaneous rate of change of displacement.