Search results
Results from the WOW.Com Content Network
Consider a graph of pressure versus temperature made not far from standard conditions (well above absolute zero) for three different samples of any ideal gas (a, b, c). To the extent that the gas is ideal, the pressure depends linearly on temperature, and the extrapolation to zero pressure occurs at absolute zero. [3]
This definition also precisely related the Celsius scale to the Kelvin scale, which defines the SI base unit of thermodynamic temperature with symbol K. Absolute zero, the lowest temperature possible, is defined as being exactly 0 K and −273.15 °C. Until 19 May 2019, the temperature of the triple point of water was defined as exactly 273.16 ...
The theoretical temperature is determined by extrapolating the ideal gas law; by international agreement, absolute zero is taken as 0 kelvin (International System of Units), which is −273.15 degrees on the Celsius scale, [1] [2] and equals −459.67 degrees on the Fahrenheit scale (United States customary units or imperial units). [3]
Absolute zero: Lowest recorded surface temperature on Earth [1] Fahrenheit's ice/water/salt mixture: Melting point of ice (at standard pressure) Average surface temperature on Earth (15 °C) Average human body temperature (37 °C) Highest recorded surface temperature on Earth [2] Boiling point of water (at standard pressure)
In 1948, the Celsius scale was recalibrated by assigning the triple point temperature of water the value of 0.01 °C exactly [35] and allowing the melting point at standard atmospheric pressure to have an empirically determined value (and the actual melting point at ambient pressure to have a fluctuating value) close to 0 °C.
On the empirical temperature scales that are not referenced to absolute zero, a negative temperature is one below the zero point of the scale used. For example, dry ice has a sublimation temperature of −78.5 °C which is equivalent to −109.3 °F. [97] On the absolute Kelvin scale this temperature is 194.6 K.
The main feature of thermodynamic diagrams is the equivalence between the area in the diagram and energy. When air changes pressure and temperature during a process and prescribes a closed curve within the diagram the area enclosed by this curve is proportional to the energy which has been gained or released by the air.
The laws describing the behaviour of gases under fixed pressure, volume, amount of gas, and absolute temperature conditions are called gas laws.The basic gas laws were discovered by the end of the 18th century when scientists found out that relationships between pressure, volume and temperature of a sample of gas could be obtained which would hold to approximation for all gases.