Search results
Results from the WOW.Com Content Network
Radiation waves may travel in unusual patterns compared to conduction heat flow. Radiation allows waves to travel from a heated body through a cold non-absorbing or partially absorbing medium and reach a warmer body again. [14] An example is the case of the radiation waves that travel from the Sun to the Earth.
conversion of the absorbed pulsed or modulated radiation into heat energy. temporal changes of the temperatures at the loci where radiation is absorbed – rising as radiation is absorbed and falling when radiation stops and the system cools. expansion and contraction following these temperature changes, which are "translated" to pressure changes.
This bump facilitates exponential Langmuir wave growth in the ambient plasma through the transfer of energy from the electron beam into specific Langmuir wave modes. A small fraction of the Langmuir wave energy can then be converted into electromagnetic radiation through interactions with other wave modes, namely ion sound waves. [23]
For example, a human voice can be sent as a radio wave or microwave by making the wave vary to corresponding variations in the voice. Musicians have also experimented with gamma rays sonification, or using nuclear radiation, to produce sound and music. [10]
Radiative heat transfer is the transfer of energy via thermal radiation, i.e., electromagnetic waves. [1] It occurs across vacuum or any transparent medium ( solid or fluid or gas ). [ 15 ] Thermal radiation is emitted by all objects at temperatures above absolute zero , due to random movements of atoms and molecules in matter.
Sonoluminescence is the emission of light from imploding bubbles in a liquid when excited by sound. Sonoluminescence was first discovered in 1934 at the University of Cologne. It occurs when a sound wave of sufficient intensity induces a gaseous cavity within a liquid to collapse quickly, emitting a burst of light.
Sound waves may be viewed using parabolic mirrors and objects that produce sound. [ 9 ] The energy carried by an oscillating sound wave converts back and forth between the potential energy of the extra compression (in case of longitudinal waves) or lateral displacement strain (in case of transverse waves) of the matter, and the kinetic energy ...
The sound waves generated by the aircraft travel at the speed of sound, which is slower than the aircraft, and cannot propagate forward from the aircraft, instead forming a conical shock front. In a similar way, a charged particle can generate a "shock wave" of visible light as it travels through an insulator.