enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Gaussian_process

    Gaussian processes are also commonly used to tackle numerical analysis problems such as numerical integration, solving differential equations, or optimisation in the field of probabilistic numerics. Gaussian processes can also be used in the context of mixture of experts models, for example.

  3. Uncertainty quantification - Wikipedia

    en.wikipedia.org/wiki/Uncertainty_quantification

    Another common situation is that parameters derived from experiments are input to simulations. For computationally expensive simulations, then often a surrogate model, e.g. a Gaussian process or a Polynomial Chaos Expansion, is necessary, defining an inverse problem for finding the surrogate model that best approximates the simulations. [4]

  4. Linear–quadratic–Gaussian control - Wikipedia

    en.wikipedia.org/wiki/Linear–quadratic...

    The second matrix Riccati differential equation solves the linear–quadratic regulator problem (LQR). These problems are dual and together they solve the linear–quadratic–Gaussian control problem (LQG). So the LQG problem separates into the LQE and LQR problem that can be solved independently. Therefore, the LQG problem is called separable.

  5. Kriging - Wikipedia

    en.wikipedia.org/wiki/Kriging

    In statistics, originally in geostatistics, kriging or Kriging (/ ˈ k r iː ɡ ɪ ŋ /), also known as Gaussian process regression, is a method of interpolation based on Gaussian process governed by prior covariances. Under suitable assumptions of the prior, kriging gives the best linear unbiased prediction (BLUP) at unsampled locations. [1]

  6. Gauss–Markov process - Wikipedia

    en.wikipedia.org/wiki/Gauss–Markov_process

    Gauss–Markov stochastic processes (named after Carl Friedrich Gauss and Andrey Markov) are stochastic processes that satisfy the requirements for both Gaussian processes and Markov processes. [1] [2] A stationary Gauss–Markov process is unique [citation needed] up to rescaling; such a process is also known as an Ornstein–Uhlenbeck process.

  7. Comparison of Gaussian process software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_Gaussian...

    This is a comparison of statistical analysis software that allows doing inference with Gaussian processes often using approximations. This article is written from the point of view of Bayesian statistics , which may use a terminology different from the one commonly used in kriging .

  8. Gaussian process approximations - Wikipedia

    en.wikipedia.org/wiki/Gaussian_process...

    Gaussian process approximations can often be expressed in terms of assumptions on under which ⁡ and can be calculated with much lower complexity. Since these assumptions are generally not believed to reflect reality, the likelihood and the best predictor obtained in this way are not exact, but they are meant to be close to their original values.

  9. Neural network Gaussian process - Wikipedia

    en.wikipedia.org/.../Neural_network_Gaussian_process

    A Neural Network Gaussian Process (NNGP) is a Gaussian process (GP) obtained as the limit of a certain type of sequence of neural networks. Specifically, a wide variety of network architectures converges to a GP in the infinitely wide limit , in the sense of distribution .