enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Group (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Group_(mathematics)

    A group is said to act on another mathematical object ⁠ ⁠ if every group element can be associated to some operation on ⁠ ⁠ and the composition of these operations follows the group law. For example, an element of the (2,3,7) triangle group acts on a triangular tiling of the hyperbolic plane by permuting the triangles. [50]

  3. List of small groups - Wikipedia

    en.wikipedia.org/wiki/List_of_small_groups

    Small groups of prime power order p n are given as follows: Order p: The only group is cyclic. Order p 2: There are just two groups, both abelian. Order p 3: There are three abelian groups, and two non-abelian groups. One of the non-abelian groups is the semidirect product of a normal cyclic subgroup of order p 2 by a cyclic group of order p.

  4. Group theory - Wikipedia

    en.wikipedia.org/wiki/Group_theory

    Applications of group theory abound. Almost all structures in abstract algebra are special cases of groups. Rings, for example, can be viewed as abelian groups (corresponding to addition) together with a second operation (corresponding to multiplication). Therefore, group theoretic arguments underlie large parts of the theory of those entities.

  5. Free group - Wikipedia

    en.wikipedia.org/wiki/Free_group

    A free group of rank k clearly has subgroups of every rank less than k. Less obviously, a (nonabelian!) free group of rank at least 2 has subgroups of all countable ranks. The commutator subgroup of a free group of rank k > 1 has infinite rank; for example for F(a,b), it is freely generated by the commutators [a m, b n] for non-zero m and n.

  6. Simple group - Wikipedia

    en.wikipedia.org/wiki/Simple_group

    In mathematics, a simple group is a nontrivial group whose only normal subgroups are the trivial group and the ... [10] and are the next example of finite simple groups.

  7. Presentation of a group - Wikipedia

    en.wikipedia.org/wiki/Presentation_of_a_group

    For example, the dihedral group D 8 of order sixteen can be generated by a rotation, r, of order 8; and a flip, f, of order 2; and certainly any element of D 8 is a product of r ' s and f ' s. However, we have, for example, rfr = f −1, r 7 = r −1, etc., so such products are not unique in D 8. Each such product equivalence can be expressed ...

  8. Klein four-group - Wikipedia

    en.wikipedia.org/wiki/Klein_four-group

    V is the symmetry group of this cross: flipping it horizontally (a) or vertically (b) or both (ab) leaves it unchanged.A quarter-turn changes it. In two dimensions, the Klein four-group is the symmetry group of a rhombus and of rectangles that are not squares, the four elements being the identity, the vertical reflection, the horizontal reflection, and a 180° rotation.

  9. Order (group theory) - Wikipedia

    en.wikipedia.org/wiki/Order_(group_theory)

    An example of the latter is a(x) = x+1, b(x) = x−1 with ab(x) = x. If ab = ba, we can at least say that ord(ab) divides lcm(ord(a), ord(b)). As a consequence, one can prove that in a finite abelian group, if m denotes the maximum of all the orders of the group's elements, then every element's order divides m.