Search results
Results from the WOW.Com Content Network
This equation, Bragg's law, describes the condition on θ for constructive interference. [12] A map of the intensities of the scattered waves as a function of their angle is called a diffraction pattern. Strong intensities known as Bragg peaks are obtained in the diffraction pattern when the scattering angles satisfy Bragg condition.
where N v is the vacancy concentration, Q v is the energy required for vacancy formation, k B is the Boltzmann constant, T is the absolute temperature, and N is the concentration of atomic sites i.e. = where ρ is density, N A the Avogadro constant, and M the molar mass. It is the simplest point defect.
Since the pressure of the standard formation reaction is fixed at 1 bar, the standard formation enthalpy or reaction heat is a function of temperature. For tabulation purposes, standard formation enthalpies are all given at a single temperature: 298 K, represented by the symbol Δ f H ⦵ 298 K.
The standard Gibbs free energy of formation (G f °) of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 bar of pressure and the specified temperature, usually 298.15 K or 25 ...
The Fermi energy is an important concept in the solid state physics of metals and superconductors. It is also a very important quantity in the physics of quantum liquids like low temperature helium (both normal and superfluid 3 He), and it is quite important to nuclear physics and to understanding the stability of white dwarf stars against ...
A simple model for the derivation of the basic properties of states at a metal surface is a semi-infinite periodic chain of identical atoms. [1] In this model, the termination of the chain represents the surface, where the potential attains the value V 0 of the vacuum in the form of a step function, figure 1.
At present, there is no single equation of state that accurately predicts the properties of all substances under all conditions. An example of an equation of state correlates densities of gases and liquids to temperatures and pressures, known as the ideal gas law, which is roughly accurate for weakly polar gases at low pressures and moderate temperatures.
An alternative derivation gives good insight, but uses Fourier transforms and convolution. To be general, consider a scalar (real) quantity ϕ ( r ) {\displaystyle \phi (\mathbf {r} )} defined in a volume V {\displaystyle V} ; this may correspond, for instance, to a mass or charge distribution or to the refractive index of an inhomogeneous medium.