Search results
Results from the WOW.Com Content Network
Fair-share scheduling is a scheduling algorithm for computer operating systems in which the CPU usage is equally distributed among system users or groups, as opposed to equal distribution of resources among processes. [1]
In contrast to the previous O(1) scheduler used in older Linux 2.6 kernels, which maintained and switched run queues of active and expired tasks, the CFS scheduler implementation is based on per-CPU run queues, whose nodes are time-ordered schedulable entities that are kept sorted by red–black trees. The CFS does away with the old notion of ...
Highest response ratio next (HRRN) scheduling is a non-preemptive discipline. It was developed by Brinch Hansen as modification of shortest job next or shortest job first (SJN or SJF) to mitigate the problem of process starvation. In HRRN, the next job is not that with the shortest estimated run time, but that with the highest response ratio ...
It uses notions of virtual time, eligible time, virtual requests and virtual deadlines for determining scheduling priority. [1] It has the property that when a job keeps requesting service, the amount of service obtained is always within the maximum quantum size of what it is entitled.
Windows NT processor scheduling refers to the process by which Windows NT determines which job (task) should be run on the computer processor at which time. Without scheduling, the processor would give attention to jobs based on when they arrived in the queue, which is usually not optimal.
The short-term scheduler (also known as the CPU scheduler) decides which of the ready, in-memory processes is to be executed (allocated a CPU) after a clock interrupt, an I/O interrupt, an operating system call or another form of signal. Thus the short-term scheduler makes scheduling decisions much more frequently than the long-term or mid-term ...
Earliest deadline first (EDF) or least time to go is a dynamic priority scheduling algorithm used in real-time operating systems to place processes in a priority queue. Whenever a scheduling event occurs (task finishes, new task released, etc.) the queue will be searched for the process closest to its deadline.
Scheduling zoo (by Christoph Dürr, Sigrid Knust, Damien Prot, Óscar C. Vásquez): an online tool for searching an optimal scheduling problem using the notation. Complexity results for scheduling problems (by Peter Brucker, Sigrid Knust): a classification of optimal scheduling problems by what is known on their runtime complexity.