Search results
Results from the WOW.Com Content Network
The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .
The number e (e = 2.718...), also known as Euler's number, which occurs widely in mathematical analysis The number i , the imaginary unit such that i 2 = − 1 {\displaystyle i^{2}=-1} The equation is often given in the form of an expression set equal to zero, which is common practice in several areas of mathematics.
His proofs are similar to Fourier's proof of the irrationality of e. In 1891, Hurwitz explained how it is possible to prove along the same line of ideas that e is not a root of a third-degree polynomial with rational coefficients, which implies that e 3 is irrational. [12] More generally, e q is irrational for any non-zero rational q. [13]
[46] [47] If e γ is a rational number, then its denominator must be greater than 10 15000. [ 3 ] Euler's constant is conjectured not to be an algebraic period , [ 3 ] but the values of its first 10 9 decimal digits seem to indicate that it could be a normal number .
The constant e also has applications to probability theory, where it arises in a way not obviously related to exponential growth. As an example, suppose that a slot machine with a one in n probability of winning is played n times, then for large n (e.g., one million), the probability that nothing will be won will tend to 1/e as n tends to infinity.
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
It has been shown that both e + π and π/e do not satisfy any polynomial equation of degree and integer coefficients of average size 10 9. [47] [48] At least one of the numbers e e and e e 2 is transcendental. [49] Schanuel's conjecture would imply that all of the above numbers are transcendental and algebraically independent. [50]
Jacob Bernoulli's first important contributions were a pamphlet on the parallels of logic and algebra published in 1685, work on probability in 1685 and geometry in 1687. His geometry result gave a construction to divide any triangle into four equal parts with two perpendicular lines.