Search results
Results from the WOW.Com Content Network
Osteocytes, the most common cell type within mature cortical bone, actively participate in the growth and maintenance of TCVs through the transfer of mitochondria to endothelial cells. Scanning electron microscopy images have revealed that osteocytes possess numerous dendritic processes with expanded, endfoot-like structures. These endfeet ...
Intercellular transfer of mitochondria in culture has been documented from MSCs and endothelial cells to breast cancer cell lines, ovarian cancer cell lines or to osteosarcoma cell line. [11] Mitochondrial transfer can occur also between cancer cells such as mesothelioma [12] and laryngeal carcinoma cells. [13]
This transport is regulated with chaperones and regulatory proteins which control the formation of the ER–mitochondria junction. Transfer of calcium from ER to mitochondria depends on high concentration of calcium in the intermembrane space, and mitochondrial calcium uniporter (MCU) accumulates calcium into the mitochondrial matrix for ...
The maximum speed of mitochondria traveling over TNTs was found to be about 80 nm/s, lower than the measured speed of 100-1400 nm/s of axonal transport of mitochondria; this could be due to the smaller diameter of TNTs inhibiting mitochondrial migration. [36]
Depiction of mitochondrial membranes. [1] Mitochondrial membrane transport proteins, also known as mitochondrial carrier proteins, are proteins which exist in the membranes of mitochondria. They serve to transport [2] molecules and other factors, such as ions, into or out of the organelles. Mitochondria contain both an inner and outer membrane ...
Many MC proteins preferentially catalyze the exchange of one solute for another ().A variety of these substrate carrier proteins, which are involved in energy transfer, have been found in the inner membranes of mitochondria and other eukaryotic organelles such as the peroxisome and facilitate the transport of inorganic ions, nucleotides, amino acids, keto acids and cofactors across the membrane.
Illustration of the malate–aspartate shuttle pathway. The malate–aspartate shuttle (sometimes simply the malate shuttle) is a biochemical system for translocating electrons produced during glycolysis across the semipermeable inner membrane of the mitochondrion for oxidative phosphorylation in eukaryotes.
Currently, this "inside-out" hypothesis (which states that the alphaproteobacteria, the ancestral mitochondria, were engulfed by the blebs of an asgardarchaeon, and later the blebs fused leaving infoldings which would eventually become the endomembrane system) is favored more than the outside-in one (which suggested that the endomembrane system ...