Search results
Results from the WOW.Com Content Network
Caltech Tutorial on Relativity — A simple introduction to Einstein's Field Equations. The Meaning of Einstein's Equation — An explanation of Einstein's field equation, its derivation, and some of its consequences; Video Lecture on Einstein's Field Equations by MIT Physics Professor Edmund Bertschinger. Arch and scaffold: How Einstein found ...
In general relativity, an exact solution is a solution of the Einstein field equations whose derivation does not invoke simplifying assumptions, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter.
If one is only interested in the weak field limit of the theory, the dynamics of matter can be computed using special relativity methods and/or Newtonian laws of gravity and then the resulting stress–energy tensor can be plugged into the Einstein field equations. But if the exact solution is required or a solution describing strong fields ...
These decompositions show that the spacetime evolution equations of general relativity are well-behaved: solutions always exist, and are uniquely defined, once suitable initial conditions have been specified. [175] Such formulations of Einstein's field equations are the basis of numerical relativity. [176]
The metric tensor is a central object in general relativity that describes the local geometry of spacetime (as a result of solving the Einstein field equations). Using the weak-field approximation, the metric tensor can also be thought of as representing the 'gravitational potential'. The metric tensor is often just called 'the metric'.
The Christoffel symbols find frequent use in Einstein's theory of general relativity, where spacetime is represented by a curved 4-dimensional Lorentz manifold with a Levi-Civita connection. The Einstein field equations – which determine the geometry of spacetime in the presence of matter – contain the Ricci tensor. Since the Ricci tensor ...
Beyond the challenges of quantum effects and cosmology, research on general relativity is rich with possibilities for further exploration: mathematical relativists explore the nature of singularities and the fundamental properties of Einstein's equations, [46] and ever more comprehensive computer simulations of specific spacetimes (such as ...
In general relativity, the Einstein–Rosen metric is an exact solution to the Einstein field equations derived in 1937 by Albert Einstein and Nathan Rosen. [1] It is the first exact solution to describe the propagation of a gravitational wave .