Search results
Results from the WOW.Com Content Network
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
Major and minor third in a major chord: major third 'M' on bottom, minor third 'm' on top. Major and minor may also refer to scales and chords that contain a major third or a minor third, respectively. A major scale is a scale in which the third scale degree (the mediant) is a major third above the tonic note. In a minor scale, the third degree ...
In other words, it is the interval between two consecutive scale degrees. Any larger interval is called a skip (also called a leap), or disjunct motion. [1] In the diatonic scale, a step is either a minor second (sometimes also called half step) or a major second (sometimes also called whole step), with all intervals of a minor third or larger ...
The previous case can be extended to cover the case where the measure of the inscribed angle is the difference between two inscribed angles as discussed in the first part of this proof. Given a circle whose center is point O, choose three points V, C, D on the circle. Draw lines VC and VD: angle ∠DVC is an inscribed angle.
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
Horizontal and vertical lines. In the general equation of a line, ax + by + c = 0, a and b cannot both be zero unless c is also zero, in which case the equation does not define a line. If a = 0 and b ≠ 0, the line is horizontal and has equation y = -c/b.
If = + is the distance from c 1 to c 2 we can normalize by =, =, = to simplify equation (1), resulting in the following system of equations: + =, + =; solve these to get two solutions (k = ±1) for the two external tangent lines: = = + = (+) Geometrically this corresponds to computing the angle formed by the tangent lines and the line of ...
the distance between the two lines is the distance between the two intersection points of these lines with the perpendicular line y = − x / m . {\displaystyle y=-x/m\,.} This distance can be found by first solving the linear systems