enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once. If such a cycle exists, the graph is called Eulerian or unicursal. [4] The term "Eulerian graph" is also sometimes used in a weaker sense to denote a graph where every vertex has even degree.

  3. Hamiltonian path - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path

    A possible Hamiltonian path is shown. Any Hamiltonian cycle can be converted to a Hamiltonian path by removing one of its edges, but a Hamiltonian path can be extended to a Hamiltonian cycle only if its endpoints are adjacent. All Hamiltonian graphs are biconnected, but a biconnected graph need not be Hamiltonian (see, for example, the Petersen ...

  4. Lagrangian and Eulerian specification of the flow field

    en.wikipedia.org/wiki/Lagrangian_and_Eulerian...

    The Lagrangian and Eulerian specifications of the flow field are sometimes loosely denoted as the Lagrangian and Eulerian frame of reference. However, in general both the Lagrangian and Eulerian specification of the flow field can be applied in any observer's frame of reference, and in any coordinate system used within the chosen frame of ...

  5. Action principles - Wikipedia

    en.wikipedia.org/wiki/Action_principles

    A system moving between two points takes one particular path; other similar paths are not taken. Each path corresponds to a value of the action. An action principle predicts or explains that the particular path taken has a stationary value for the system's action: similar paths near the one taken have very similar action value.

  6. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    The correspondence between Lagrangian and Hamiltonian mechanics is achieved with the tautological one-form. Any smooth real-valued function H on a symplectic manifold can be used to define a Hamiltonian system. The function H is known as "the Hamiltonian" or "the energy function." The symplectic manifold is then called the phase space.

  7. Hamilton's principle - Wikipedia

    en.wikipedia.org/wiki/Hamilton's_principle

    Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q 1, q 2, ..., q N) between two specified states q 1 = q(t 1) and q 2 = q(t 2) at two specified times t 1 and t 2 is a stationary point (a point where the variation is zero) of the action functional [] = ((), ˙ (),) where (, ˙,) is the Lagrangian function for the system.

  8. Euler diagram - Wikipedia

    en.wikipedia.org/wiki/Euler_diagram

    Euler diagram illustrating that the set of "animals with four legs" is a subset of "animals", but the set of "minerals" is a disjoint set (it has no members in common) with "animals" Euler diagram showing the relationships between different Solar System objects

  9. Tournament (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Tournament_(graph_theory)

    a is inserted between v 2 and v 3.. Any tournament on a finite number of vertices contains a Hamiltonian path, i.e., directed path on all vertices (Rédei 1934).. This is easily shown by induction on : suppose that the statement holds for , and consider any tournament on + vertices.