Search results
Results from the WOW.Com Content Network
Simplified control circuit of human thermoregulation. [8]The core temperature of a human is regulated and stabilized primarily by the hypothalamus, a region of the brain linking the endocrine system to the nervous system, [9] and more specifically by the anterior hypothalamic nucleus and the adjacent preoptic area regions of the hypothalamus.
The term "thermal energy" is often used ambiguously in physics and engineering. [1] It can denote several different physical concepts, including: Internal energy: The energy contained within a body of matter or radiation, excluding the potential energy of the whole system, and excluding the kinetic energy of the system moving as a whole.
Heat is produced in the body by the continuous metabolism of nutrients which provides energy for the systems of the body. [43] The human body must maintain a consistent internal temperature to maintain healthy bodily functions.
Calorimetry is the empirical basis of the idea of quantity of heat transferred in a process. The transferred heat is measured by changes in a body of known properties, for example, temperature rise, change in volume or length, or phase change, such as melting of ice. [69] [70]
Rectal temperature is expected to be approximately 1 °F (0.56 °C) higher than an oral temperature taken on the same person at the same time. Ear thermometers measure temperature from the tympanic membrane using infrared sensors and also aim to measure core body temperature, since the blood supply of this membrane is directly shared with the ...
The temperature of stars other than the Sun can be approximated using a similar means by treating the emitted energy as a black body radiation. [27] So: = where L is the luminosity, σ is the Stefan–Boltzmann constant, R is the stellar radius and T is the effective temperature.
Thermoregulation is the ability of an organism to keep its body temperature within certain boundaries, even when the surrounding temperature is very different. A thermoconforming organism, by contrast, simply adopts the surrounding temperature as its own body temperature, thus avoiding the need for internal thermoregulation.
The human body will release excess heat into the environment, so the body can continue to operate. The heat transfer is proportional to temperature difference. In cold environments, the body loses more heat to the environment and in hot environments the body does not release enough heat. Both the hot and cold scenarios lead to discomfort. [2]