Search results
Results from the WOW.Com Content Network
However, the proposed connection between a single gene and a single protein enzyme outlived the protein theory of gene structure. In a 1948 paper, Norman Horowitz named the concept the "one gene–one enzyme hypothesis". [2] Although influential, the one gene–one enzyme hypothesis was not unchallenged.
The reaction for the aerobic respiration is essentially the reverse of photosynthesis, except that now there is a large release of chemical energy which is stored in ATP molecules (up to 38 ATP molecules are formed from one molecule of glucose and 6 O 2 molecules). The simplified version of this reaction is: C 6 H 12 O 6 + 6 O 2 → 6 CO 2 + 6 ...
ROS-related oxidation of DNA is one of the main causes of mutations, which can produce several types of DNA damage, including non-bulky (8-oxoguanine and formamidopyrimidine) and bulky (cyclopurine and etheno adducts) base modifications, abasic sites, non-conventional single-strand breaks, protein-DNA adducts, and intra/interstrand DNA ...
Another method uses a reaction of hydrogen peroxide with sodium hypochlorite in aqueous solution: [19] H 2 O 2 + NaOCl → O 2 (1 Δ g) + NaCl + H 2 O. A retro-Diels Alder reaction of the diphenylanthracene peroxide can also yield singlet oxygen, along with an diphenylanthracene: [22] Retro-Diels Alder formation of singlet oxygen
The experimental evidence that oxygen is released through cyclic reaction of oxygen evolving complex (OEC) within one PSII was provided by Pierre Joliot et al. [18] They have shown that, if dark-adapted photosynthetic material (higher plants, algae, and cyanobacteria) is exposed to a series of single turnover flashes, oxygen evolution is ...
Rather than combustion, organisms rely on elaborate sequences of electron-transfer reactions, often coupled to proton transfer. The direct reaction of O 2 with fuel is precluded by the oxygen reduction reaction, which produces water and adenosine triphosphate. Cytochrome c oxidase affects the oxygen reduction reaction by binding O 2 in a heme ...
A typical operon. In genetics, an operon is a functioning unit of DNA containing a cluster of genes under the control of a single promoter. [1] The genes are transcribed together into an mRNA strand and either translated together in the cytoplasm, or undergo splicing to create monocistronic mRNAs that are translated separately, i.e. several strands of mRNA that each encode a single gene product.
Many major classes of organic molecules in living organisms contain oxygen atoms, such as proteins, nucleic acids, carbohydrates and fats, as do the major constituent inorganic compounds of animal shells, teeth, and bone. Most of the mass of living organisms is oxygen as a component of water, the major constituent of lifeforms.