Search results
Results from the WOW.Com Content Network
This interval is called the confidence interval, and the radius (half the interval) is called the margin of error, corresponding to a 95% confidence level. Generally, at a confidence level , a sample sized of a population having expected standard deviation has a margin of error
The confidence interval can be expressed in terms of statistical significance, e.g.: "The 95% confidence interval represents values that are not statistically significantly different from the point estimate at the .05 level." [20] Interpretation of the 95% confidence interval in terms of statistical significance.
In the social sciences, a result may be considered statistically significant if its confidence level is of the order of a two-sigma effect (95%), while in particle physics and astrophysics, there is a convention of requiring statistical significance of a five-sigma effect (99.99994% confidence) to qualify as a discovery. [3]
To determine an appropriate sample size n for estimating proportions, the equation below can be solved, where W represents the desired width of the confidence interval. The resulting sample size formula, is often applied with a conservative estimate of p (e.g., 0.5): = /
A bar chart with confidence intervals (shown as red lines) ... one standard error, or a particular confidence interval (e.g., a 95% interval). These quantities are ...
The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.
Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.
The term precision in this sense ("mensura praecisionis observationum") first appeared in the works of Gauss (1809) "Theoria motus corporum coelestium in sectionibus conicis solem ambientium" (page 212).