enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    To determine an appropriate sample size n for estimating proportions, the equation below can be solved, where W represents the desired width of the confidence interval. The resulting sample size formula, is often applied with a conservative estimate of p (e.g., 0.5): = /

  3. Standard error - Wikipedia

    en.wikipedia.org/wiki/Standard_error

    when the probability distribution is unknown, Chebyshev's or the Vysochanskiï–Petunin inequalities can be used to calculate a conservative confidence interval; and; as the sample size tends to infinity the central limit theorem guarantees that the sampling distribution of the mean is asymptotically normal.

  4. Margin of error - Wikipedia

    en.wikipedia.org/wiki/Margin_of_error

    For a confidence level, there is a corresponding confidence interval about the mean , that is, the interval [, +] within which values of should fall with probability . Precise values of z γ {\displaystyle z_{\gamma }} are given by the quantile function of the normal distribution (which the 68–95–99.7 rule approximates).

  5. Binomial proportion confidence interval - Wikipedia

    en.wikipedia.org/wiki/Binomial_proportion...

    In contrast, it is worth noting that other confidence interval may have coverage levels that are lower than the nominal , i.e., the normal approximation (or "standard") interval, Wilson interval, [8] Agresti–Coull interval, [13] etc., with a nominal coverage of 95% may in fact cover less than 95%, [4] even for large sample sizes.

  6. Confidence interval - Wikipedia

    en.wikipedia.org/wiki/Confidence_interval

    The colored lines are 50% confidence intervals for the mean, μ. At the center of each interval is the sample mean, marked with a diamond. The blue intervals contain the population mean, and the red ones do not. In statistics, a confidence interval (CI) is a tool for estimating a parameter, such as the mean of a population. [1]

  7. Prediction interval - Wikipedia

    en.wikipedia.org/wiki/Prediction_interval

    Given a sample from a normal distribution, whose parameters are unknown, it is possible to give prediction intervals in the frequentist sense, i.e., an interval [a, b] based on statistics of the sample such that on repeated experiments, X n+1 falls in the interval the desired percentage of the time; one may call these "predictive confidence intervals".

  8. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    So that with a sample of 20 points, 90% confidence interval will include the true variance only 78% of the time. [44] The basic / reverse percentile confidence intervals are easier to justify mathematically [45] [42] but they are less accurate in general than percentile confidence intervals, and some authors discourage their use. [42]

  9. Design effect - Wikipedia

    en.wikipedia.org/wiki/Design_effect

    Some of the more basic methods include simple random sampling (SRS, with or without replacement) and systematic sampling for getting a fixed sample size. There is also Bernoulli sampling with a random sample size. More advanced techniques such as stratified sampling and cluster sampling can also be designed to be EPSEM. For example, in cluster ...