enow.com Web Search

  1. Ad

    related to: calculus length of a curve formula

Search results

  1. Results from the WOW.Com Content Network
  2. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    There are continuous curves on which every arc (other than a single-point arc) has infinite length. An example of such a curve is the Koch curve. Another example of a curve with infinite length is the graph of the function defined by f(x) = x sin(1/x) for any open set with 0 as one of its delimiters and f(0) = 0.

  3. Curvature - Wikipedia

    en.wikipedia.org/wiki/Curvature

    has a length equal to one and is thus a unit tangent vector. If the curve is twice differentiable, that is, if the second derivatives of x and y exist, then the derivative of T(s) exists. This vector is normal to the curve, its length is the curvature κ(s), and it is oriented toward the center of curvature. That is,

  4. Curve - Wikipedia

    en.wikipedia.org/wiki/Curve

    A curve is simple if it is the image of an interval or a circle by an injective continuous function. In other words, if a curve is defined by a continuous function with an interval as a domain, the curve is simple if and only if any two different points of the interval have different images, except, possibly, if the points are the endpoints of ...

  5. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature.For a curve, it equals the radius of the circular arc which best approximates the curve at that point.

  6. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations. A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to ...

  7. Intrinsic equation - Wikipedia

    en.wikipedia.org/wiki/Intrinsic_equation

    Therefore an intrinsic equation defines the shape of the curve without specifying its position relative to an arbitrarily defined coordinate system. The intrinsic quantities used most often are arc length s {\displaystyle s} , tangential angle θ {\displaystyle \theta } , curvature κ {\displaystyle \kappa } or radius of curvature , and, for 3 ...

  8. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    The curve of the chains of a suspension bridge is always an intermediate curve between a parabola and a catenary, but in practice the curve is generally nearer to a parabola due to the weight of the load (i.e. the road) being much larger than the cables themselves, and in calculations the second-degree polynomial formula of a parabola is used.

  9. Estimation lemma - Wikipedia

    en.wikipedia.org/wiki/Estimation_lemma

    Formally, the inequality can be shown to hold using the definition of contour integral, the absolute value inequality for integrals and the formula for the length of a curve as follows:

  1. Ad

    related to: calculus length of a curve formula