enow.com Web Search

  1. Ad

    related to: triangle inequality theorem practice problems

Search results

  1. Results from the WOW.Com Content Network
  2. Triangle inequality - Wikipedia

    en.wikipedia.org/wiki/Triangle_inequality

    The converse of the triangle inequality theorem is also true: if three real numbers are such that each is less than the sum of the others, then there exists a triangle with these numbers as its side lengths and with positive area; and if one number equals the sum of the other two, there exists a degenerate triangle (that is, with zero area ...

  3. Minkowski inequality - Wikipedia

    en.wikipedia.org/wiki/Minkowski_inequality

    The reverse inequality follows from the same argument as the standard Minkowski, but uses that Holder's inequality is also reversed in this range. Using the Reverse Minkowski, we may prove that power means with p ≤ 1 , {\textstyle p\leq 1,} such as the harmonic mean and the geometric mean are concave.

  4. Ono's inequality - Wikipedia

    en.wikipedia.org/wiki/Ono's_inequality

    In mathematics, Ono's inequality is a theorem about triangles in the Euclidean plane. In its original form, as conjectured by Tôda Ono (小野藤太) in 1914, the inequality is actually false; however, the statement is true for acute triangles , as shown by F. Balitrand in 1916.

  5. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.

  6. Barrow's inequality - Wikipedia

    en.wikipedia.org/wiki/Barrow's_inequality

    Barrow's proof of this inequality was published in 1937, as his solution to a problem posed in the American Mathematical Monthly of proving the Erdős–Mordell inequality. [1] This result was named "Barrow's inequality" as early as 1961. [4] A simpler proof was later given by Louis J. Mordell. [5]

  7. Ptolemy's inequality - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_inequality

    For four points in order around a circle, Ptolemy's inequality becomes an equality, known as Ptolemy's theorem: ¯ ¯ + ¯ ¯ = ¯ ¯. In the inversion-based proof of Ptolemy's inequality, transforming four co-circular points by an inversion centered at one of them causes the other three to become collinear, so the triangle equality for these three points (from which Ptolemy's inequality may ...

  8. List of triangle inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_triangle_inequalities

    The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);

  9. Erdős–Mordell inequality - Wikipedia

    en.wikipedia.org/wiki/Erdős–Mordell_inequality

    The right side is the area of triangle ABC, but on the left side, r + z is at least the height of the triangle; consequently, the left side cannot be smaller than the right side. Now reflect P on the angle bisector at C. We find that cr ≥ ay + bx for P's reflection. Similarly, bq ≥ az + cx and ap ≥ bz + cy. We solve these inequalities for ...

  1. Ad

    related to: triangle inequality theorem practice problems