Search results
Results from the WOW.Com Content Network
For example, an IBM PC with an Intel 80486 CPU running at 50 MHz will be about twice as fast (internally only) as one with the same CPU and memory running at 25 MHz, while the same will not be true for MIPS R4000 running at the same clock rate as the two are different processors that implement different architectures and microarchitectures ...
The purpose of overclocking is to increase the operating speed of a given component. [3] Normally, on modern systems, the target of overclocking is increasing the performance of a major chip or subsystem, such as the main processor or graphics controller, but other components, such as system memory or system buses (generally on the motherboard), are commonly involved.
Every program or task that runs on a computer system occupies a certain amount of processing time on the CPU. If the CPU has completed all tasks it is idle. Modern processors use idle time to save power. Common methods are reducing the clock speed along with the CPU voltage and sending parts of the processor into a sleep state.
On a 6502 that instruction requires two clock cycles, or 2 μs at 1 MHz. Although the 4.77 MHz 8088's clock cycles are shorter, the LDA # needs at least [1] 4 of them, so it takes 4 / 4.77 MHz = 0.84 μs at least. So, at best, that instruction runs only a little more than 2 times as fast on the original IBM PC than on the Apple II.
For a given CPU core, energy usage will scale up as its clock rate increases. Reducing the clock rate or undervolting usually reduces energy consumption; it is also possible to undervolt the microprocessor while keeping the clock rate the same. [2] New features generally require more transistors, each of which uses power.
For example, a system with an external clock of 100 MHz and a 36x clock multiplier will have an internal CPU clock of 3.6 GHz. The external address and data buses of the CPU (often collectively termed front side bus (FSB) in PC contexts) also use the external clock as a fundamental timing base; however, they could also employ a (small) multiple ...
Dynamic frequency scaling (also known as CPU throttling) is a power management technique in computer architecture whereby the frequency of a microprocessor can be automatically adjusted "on the fly" depending on the actual needs, to conserve power and reduce the amount of heat generated by the chip.
CPU time (or process time) is the amount of time that a central processing unit (CPU) was used for processing instructions of a computer program or operating system. CPU time is measured in clock ticks or seconds. Sometimes it is useful to convert CPU time into a percentage of the CPU capacity, giving the CPU usage.