enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]

  3. PS Power and Sample Size - Wikipedia

    en.wikipedia.org/wiki/PS_Power_and_Sample_Size

    A description of each calculation, written in English, is generated and may be copied into the user's documents. Interactive help is available. The program provides methods that are appropriate for matched and independent t-tests, [ 2 ] survival analysis, [ 5 ] matched [ 6 ] and unmatched [ 7 ] [ 8 ] studies of dichotomous events, the Mantel ...

  4. nQuery Sample Size Software - Wikipedia

    en.wikipedia.org/wiki/NQuery_Sample_Size_Software

    nQuery is a clinical trial design platform used for the design and monitoring of adaptive, group sequential, and fixed sample size trials. It is most commonly used by biostatisticians to calculate sample size and statistical power for adaptive clinical trial design. nQuery is proprietary software developed and distributed by Statsols.

  5. Design effect - Wikipedia

    en.wikipedia.org/wiki/Design_effect

    If the sample size is 1,000, then the effective sample size will be 500. It means that the variance of the weighted mean based on 1,000 samples will be the same as that of a simple mean based on 500 samples obtained using a simple random sample.

  6. Completely randomized design - Wikipedia

    en.wikipedia.org/wiki/Completely_randomized_design

    All completely randomized designs with one primary factor are defined by 3 numbers: k = number of factors (= 1 for these designs) L = number of levels; n = number of replications; and the total sample size (number of runs) is N = k × L × n.

  7. Fisher's exact test - Wikipedia

    en.wikipedia.org/wiki/Fisher's_exact_test

    It is named after its inventor, Ronald Fisher, and is one of a class of exact tests, so called because the significance of the deviation from a null hypothesis (e.g., p-value) can be calculated exactly, rather than relying on an approximation that becomes exact in the limit as the sample size grows to infinity, as with many statistical tests.

  8. Adaptive design (medicine) - Wikipedia

    en.wikipedia.org/wiki/Adaptive_design_(medicine)

    Sample size, by a set interval at a time. Sample sizes can be changed. These trials usually change the sample size by adding or removing set-blocks of patients such as adding 20 patients at a time, and then re-evaluating. This type of design is explained in detail on PANDA. [6] Response adaptive randomisation Randomization ratios

  9. Stratified randomization - Wikipedia

    en.wikipedia.org/wiki/Stratified_randomization

    Graphic breakdown of stratified random sampling. In statistics, stratified randomization is a method of sampling which first stratifies the whole study population into subgroups with same attributes or characteristics, known as strata, then followed by simple random sampling from the stratified groups, where each element within the same subgroup are selected unbiasedly during any stage of the ...