Search results
Results from the WOW.Com Content Network
An interstellar cloud is generally an accumulation of gas, plasma, and dust in our and other galaxies. But differently, an interstellar cloud is a denser-than-average region of the interstellar medium , the matter and radiation that exists in the space between the star systems in a galaxy.
The interstellar medium (ISM) is the matter and radiation that exists in the space between the star systems in a galaxy. This matter includes gas in ionic, atomic, and molecular form, as well as dust and cosmic rays. It fills interstellar space and blends smoothly into the surrounding intergalactic space.
Stars form by gravitational collapse of interstellar gas clouds. As the collapse increases the density, radiative energy loss decreases due to increased opacity. This raises the temperature of the cloud which prevents further collapse, and a hydrostatic equilibrium is established. Gas continues to fall towards the core in a rotating disk.
Radiation from the hot white dwarf excites the expelled gases, producing emission nebulae with spectra similar to those of emission nebulae found in star formation regions. [25] They are H II regions , because mostly hydrogen is ionized, but planetary are denser and more compact than nebulae found in star formation regions.
Dark nebulae are dark because naked interstellar dust or dust covered with condensed gases absorb visible light by extinction and remit infrared and submillimetre radiation. Infrared emission from the dust cools the clouds down to 10 to 20 K. [ 63 ] The largest dark nebula are giant molecular clouds that contain 10 thousand to 10 million solar ...
These clouds are gravitationally unstable, and matter coalesces within them to smaller denser clumps, which then rotate, collapse, and form stars. Star formation is a complex process, which always produces a gaseous protoplanetary disk around the young star. This may give birth to planets in certain circumstances, which are not well known.
An interstellar cloud of gas will remain in hydrostatic equilibrium as long as the kinetic energy of the gas pressure is in balance with the potential energy of the internal gravitational force. Mathematically this is expressed using the virial theorem , which states that to maintain equilibrium, the gravitational potential energy must equal ...
This rotation causes the cloud to flatten out—much like forming a flat pizza out of dough—and take the form of a disk. This occurs because centripetal acceleration from the orbital motion resists the gravitational pull of the star only in the radial direction, but the cloud remains free to collapse in the axial direction.