Search results
Results from the WOW.Com Content Network
Every time the temperature sensing network determines that a rise above the specified junction temperature (), is imminent, measures such as clock gating, clock stretching, clock speed reduction and others (commonly referred to as thermal throttling) are applied to prevent the temperature to raise further. If the applied mechanisms are not ...
The subthreshold slope is a feature of a MOSFET's current–voltage characteristic.. In the subthreshold region, the drain current behaviour—though being controlled by the gate terminal—is similar to the exponentially decreasing current of a forward biased diode.
In semiconductor electronics, Dennard scaling, also known as MOSFET scaling, is a scaling law which states roughly that, as transistors get smaller, their power density stays constant, so that the power use stays in proportion with area; both voltage and current scale (downward) with length.
Calculating thermal conductance is crucial for designing effective heat sinks and cooling systems in electronic devices. Automotive design : Automotive engineers use thermal resistance to optimize the cooling system and prevent overheating in engines and other vehicle components.
If the MOSFET is an n-channel or nMOS FET, then the source and drain are n+ regions and the body is a p region. If the MOSFET is a p-channel or pMOS FET, then the source and drain are p+ regions and the body is a n region. The source is so named because it is the source of the charge carriers (electrons for n-channel, holes for p-channel) that ...
Where is the thermal conductivity, is the density of the medium, is the specific heat, =, the thermal diffusivity and is the rate of heat generation per unit volume. Heat diffuses from the source following the above equation and solution in an homogeneous medium follows a Gaussian distribution.
Thermal simulations give engineers a visual representation of the temperature and airflow inside the equipment. Thermal simulations enable engineers to design the cooling system; to optimise a design to reduce power consumption, weight and cost; and to verify the thermal design to ensure there are no issues when the equipment is built.
In 1905, in one of Albert Einstein's Annus mirabilis papers the theory of Brownian motion was first solved in terms of thermal fluctuations. The following year, in a second paper about Brownian motion, Einstein suggested that the same phenomena could be applied to derive thermally-agitated currents, but did not carry out the calculation as he considered it to be untestable.