Search results
Results from the WOW.Com Content Network
In mathematics, a telescoping series is a series whose general term is of the form = +, i.e. the difference of two consecutive terms of a sequence (). As a consequence the partial sums of the series only consists of two terms of ( a n ) {\displaystyle (a_{n})} after cancellation.
which converges much faster than the original series. Coming back to Leibniz formula, we obtain a representation of π {\displaystyle \pi } that separates 3 {\displaystyle 3} and involves a fastly converging sum over just the squared even numbers ( 2 n ) 2 {\displaystyle (2n)^{2}} ,
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
A pronic number is a number that is the product of two consecutive integers, that is, a number of the form (+). [1] The study of these numbers dates back to Aristotle.They are also called oblong numbers, heteromecic numbers, [2] or rectangular numbers; [3] however, the term "rectangular number" has also been applied to the composite numbers.
In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. [1] The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions.
If an equation can be put into the form f(x) = x, and a solution x is an attractive fixed point of the function f, then one may begin with a point x 1 in the basin of attraction of x, and let x n+1 = f(x n) for n ≥ 1, and the sequence {x n} n ≥ 1 will converge to the solution x.
The crucial aspect of the method is employment of the "Adomian polynomials" which allow for solution convergence of the nonlinear portion of the equation, without simply linearizing the system. These polynomials mathematically generalize to a Maclaurin series about an arbitrary external parameter; which gives the solution method more ...
Some solutions of a differential equation having a regular singular point with indicial roots = and .. In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form ″ + ′ + = with ′ and ″.