Search results
Results from the WOW.Com Content Network
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
Statistical tests are used to test the fit between a hypothesis and the data. [1] [2] Choosing the right statistical test is not a trivial task. [1]The choice of the test depends on many properties of the research question.
The cumulative distribution function (cdf) of the half-logistic distribution is intimately related to the cdf of the logistic distribution. Formally, if F(k) is the cdf for the logistic distribution, then G(k) = 2F(k) − 1 is the cdf of a half-logistic distribution. Specifically,
CDF of Weibull distribution for the example of predicting failure in materials, σ 0 = 50 MPa. The Weibull distribution, represented as a cumulative distribution function (CDF), is defined by: = (()) in which m is the Weibull modulus.
For example, Tukey's range test and Duncan's new multiple range test (MRT), in which the sample x 1, ..., x n is a sample of means and q is the basic test-statistic, can be used as post-hoc analysis to test between which two groups means there is a significant difference (pairwise comparisons) after rejecting the null hypothesis that all groups ...
Because of the factorial function in the denominator of the PDF and CDF, the Erlang distribution is only defined when the parameter k is a positive integer. In fact, this distribution is sometimes called the Erlang- k distribution (e.g., an Erlang-2 distribution is an Erlang distribution with k = 2 {\displaystyle k=2} ).
When the smaller values tend to be farther away from the mean than the larger values, one has a skew distribution to the left (i.e. there is negative skewness), one may for example select the square-normal distribution (i.e. the normal distribution applied to the square of the data values), [1] the inverted (mirrored) Gumbel distribution, [1 ...
The folded normal distribution is a probability distribution related to the normal distribution.Given a normally distributed random variable X with mean μ and variance σ 2, the random variable Y = |X| has a folded normal distribution.