Search results
Results from the WOW.Com Content Network
A measure of disorder; the higher the entropy the greater the disorder. [5] In thermodynamics, a parameter representing the state of disorder of a system at the atomic, ionic, or molecular level; the greater the disorder the higher the entropy. [6] A measure of disorder in the universe or of the unavailability of the energy in a system to do ...
In the case of an ideal gas, the heat capacity is constant and the ideal gas law PV = nRT gives that α V V = V/T = nR/p, with n the number of moles and R the molar ideal-gas constant. So, the molar entropy of an ideal gas is given by (,) = (,) + . In this expression C P now is the molar heat capacity. The entropy of inhomogeneous ...
The more such states are available to the system with appreciable probability, the greater the entropy. In statistical mechanics, entropy is a measure of the number of ways a system can be arranged, often taken to be a measure of "disorder" (the higher the entropy, the higher the disorder).
For the emission of NBR, including graybody radiation (GR), the resultant emitted entropy flux, or radiance L, has a higher ratio of entropy-to-energy (L/K), than that of BR. That is, the entropy flux of NBR emission is farther removed from the conduction and convection q/T result, than that for BR emission. [65]
The internal energy of an ideal gas depends only on its temperature, and not on the volume of its containing box, so it is not an energy effect that tends to increase the volume of the box as gas pressure does. This implies that the pressure of an ideal gas has an entropic origin. [5] What is the origin of such an entropic force?
Clearly the entropy change during the liquid–gas transition (x from 0 to 1) diverges in the limit of T→0. This violates Eq. . Nature solves this paradox as follows: at temperatures below about 100 mK, the vapor pressure is so low that the gas density is lower than the best vacuum in the universe. In other words, below 100 mK there is simply ...
The entropy of the surrounding room decreases less than the entropy of the ice and water increases: the room temperature of 298 K is larger than 273 K and therefore the ratio, (entropy change), of δQ / 298 K for the surroundings is smaller than the ratio (entropy change), of δQ / 273 K for the ice and water system. This is ...
If, rather than an isolated system, we have a closed system, in which the entropy rather than the energy remains constant, then it follows from the first and second laws of thermodynamics that the energy of that system will drop to a minimum value at equilibrium, transferring its energy to the other system. To restate: